
320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

An Energy-Efficient BNN Accelerator
With Two-Stage Value Prediction for

Sparse-Edge Gesture Recognition
Yongliang Zhang, Yitong Rong , Xuyang Duan , Zhen Yang, Qiang Li, Ziyu Guo , Member, IEEE,

Xu Cheng , Member, IEEE, Xiaoyang Zeng, Member, IEEE, and Jun Han , Member, IEEE

Abstract— In recent years, natural, flexible, and contactless
vision-based gesture recognition has received significant attention
in human-computer interaction. However, employing convolu-
tional neural networks (CNNs) for RGB or RGB-D gestures can
result in excessive power consumption and poor energy efficiency,
making them unsuitable for embedded systems. In this paper,
we propose a lightweight sparse binarized neural network (sBNN)
model for edge gesture recognition that achieves an accuracy
of 89.43%-99.92% on four open-source gesture datasets with
≤20.26 million operations (MOP) and ≤15.83-Kilobytes (KB)
parameters. We find high channel-level sparsity in the activation
maps of sBNN when edge gestures are used as inputs. The
sparse activation maps have multiple identical activation vectors
called sparse activation vectors (SAV), which lead to highly
repeated calculations. In order to avoid this issue, we propose a
two-stage value prediction approach to skip these calculations,
achieving a speedup of 1.03x-1.83x. Moreover, to reduce on-chip
memory, the compression technique is applied to the sparse
activation maps, providing a compression rate of 1.72x-3.45x.
Finally, we implement an energy-efficient sparse BNN accelerator
(SBA) on an embedded field-programmable gate array (FPGA).
The experimental results show that our SBA has a latency of
26.3-46.8-µs, a power consumption of 0.807 W, and an energy
efficiency of 536.22-952.70-GOPS/W at 50-MHz frequency. Our
SBA offers lower latency, lower power consumption, and higher
energy efficiency than previous state-of-the-art gesture recogni-
tion accelerators.

Index Terms— Gesture recognition, sparse BNN, compression
technique, value prediction, FPGA.

I. INTRODUCTION

GESTURE recognition [1], [2] is crucial to
human-computer interaction, offering non-contact,

long-distance, and flexible advantages which have various
applications in smart homes, virtual reality, augmented reality,
and more. Gesture recognition methods can be classified into
sensor-based and vision-based methods. While the sensor-
based method [3], [4] has been extensively studied, it is either

Manuscript received 1 May 2023; revised 26 August 2023; accepted 21
September 2023. Date of publication 9 October 2023; date of current version
12 January 2024. This work was supported by the National Natural Science
Foundation of China under Grant 61934002. This article was recommended
by Associate Editor X. Zhang. (Corresponding author: Jun Han.)

The authors are with the State Key Laboratory of Integrated Chips
and Systems, Fudan University, Shanghai 201203, China (e-mail: junhan@
fudan.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2023.3320175.

Digital Object Identifier 10.1109/TCSI.2023.3320175

uncomfortable to wear or vulnerable to environmental effects.
In contrast, the vision-based method [5], [6] uses RGB or
RGB-D images for gesture recognition. Traditional machine
learning algorithms are easily influenced by environmental
conditions, while convolutional neural networks (CNN) are
emerging as powerful tools for gesture recognition due to
their superior learning capability and broad applicability. For
example, using an embedded CNN model, Wang [7] achieves
a recognition accuracy of 99.96% for RGB-D American Sign
Language (ASL) [8]. Moreover, Lu [5] demonstrates that
even four binarized gesture edges can achieve high accuracy
with a CNN model. As we know, the hardware’s energy
efficiency negatively correlates with the number of parameters
and computations. In contrast, accuracy and classification
quantity positively correlate with the number of parameters
and computations. CNN models typically employ numerous
parameters and extensive calculations, resulting in high
latency and low energy efficiency, making them unsuitable
for embedded systems.

As a similar structure to CNN, binarized neural networks
(BNN) [9] implement convolution operations with XNOR-
Popcount instead of multiply-accumulate (MAC), achieving
high energy efficiency at the cost of reduced precision.
However, most BNN studies for gesture recognition [10]
have focused solely on RGB images. The MAC convolution
operations in the first layer of the BNN entail additional
resource overhead and power consumption. To address this
issue, binarized gestures [11], with insignificance texture
information and important gesture edges, have been used. In
this paper, we apply binarized sparse edge gestures (SEG) as
input after removing the internal texture information. During
forward inference, we have the insight that taking SEG as
input leads to channel-level sparse activation maps (SAM),
which contain many repeated constant vectors along the
activation maps’ channel dimension. These repeated constant
vectors in activation maps, called sparse activation vectors
(SAV), can be predicted to skip calculations and compressed
to reduce data storage. In CNN, a significant number of input
values are constant (zeros), and their corresponding partial
sums do not contribute to the final result [12], [13]. However,
in BNN, where input values are limited to −1 or +1, all
partial sums are non-negligible. Fortunately, because of the
sparsity brought by SEG, a large number of SAVs can be
predicted to skip repeated calculations.

1549-8328 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7057-9925
https://orcid.org/0000-0002-2609-846X
https://orcid.org/0000-0002-4792-1398
https://orcid.org/0000-0002-0314-0178
https://orcid.org/0000-0002-5245-0754

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 321

The large number of SAV in the activation maps provides
opportunities for further improvements in the energy efficiency
of BNN. With many convolution results that can be predicted,
we explore the value prediction approach’s role in addressing
repeated calculations in sBNN. Value prediction approaches
are often employed in general-purpose processors to solve
the computational burden resulting from a significant number
of repeated calculations [14]. Given that many SAVs can be
predicted in the sBNN model, we introduce a value prediction
approach in the calculations of sBNN to skip repeated calcu-
lations, speed up calculations, and improve energy efficiency.
Additionally, compression and decompression method are also
introduced into the calculation of sBNN to reduce data storage
and power consumption.

In this paper, we propose a lightweight sparse BNN
(sBNN) model for binarized SEG recognition. Because of
the sparsity of SEG, there are many channel-level SAVs and
repeated calculations. We introduce two-stage value prediction
to accelerate our sBNN model and SAM compression and
decompression for competitive energy efficiency. Contribu-
tions to our study are summarized as follows:

1) An SEG recognition algorithm with a lightweight
sBNN model, which has the advantages of a low
number of parameters, low computations, and high
accuracy for four open-source gesture datasets. It has
≤15.83 Kilobyte (KB) parameters, ≤20.26 million oper-
ations (MOP), and 89.43% - 99.92% accuracy for
gesture datasets.

2) Energy-efficient approaches for sBNN, including a
two-stage value prediction and a channel-level sparse
activation maps compression and decompression. The
energy-efficient two-stage value prediction approach can
skip repeated calculations to speed up sBNN computa-
tion and reduce power consumption. The channel-level
sparse activation compression and decompression can
reduce the required data storage.

3) A novel real-time sparse BNN accelerator (SBA) based
on the Genesys2 board, which has a latency of
26.3 - 46.8 µs, a power consumption of 0.807 W, and
an energy efficiency of 536.22 - 952.70 GOPS/W at
50 MHz frequency.

The remainder of this paper is structured as follows.
Section II provides a review of related work on gesture recog-
nition. Section III describes the proposed SEG recognition
algorithm. Section IV presents energy-efficient approaches for
sBNN. Section V presents the hardware implementation of
SBA. Finally, Section VI provides a conclusion.

II. RELATED WORK

As mentioned in Section I, gesture recognition can be
achieved through sensor-based or vision-based. The vision-
based methods use various types of input data such as
RGB-D images, RGB images, depth images, or extracted
features from these images. Based on feature extraction or not,
we categorize the vision-based methods into feature extrac-
tion and classification methods and end-to-end classification
methods.

A. Sensor-Based Methods

The sensor-based methods can be further divided into two
types: wearable sensors and radar sensors. Wearable gloves
[15] containing multiple sensors have been studied extensively
in gesture recognition. In [16], a gesture recognition glove
based on charge-transfer touch sensors is developed and used
to recognize gestures for the numbers 0-9 and 26 English
alphabets. However, while gesture recognition based on wear-
able sensors can achieve high precision, it is limited to sports
and provides a poor wearing experience. In the last decade,
radar sensors have garnered increasing attention for gesture
recognition. Zhang et al. [17] achieve high recognition rates
of 96% by using frequency-modulated continuous waves to
classify dynamic continuous gestures. However, radar waves
may be lost during transmission or absorbed by environmental
objects, leading to a poor recognition effect.

B. Vision-Based Methods

1) End-to-End Classification Methods: In the end-to-end
classification methods, gesture recognition is achieved by
directly processing the original input image. For example, Gar-
cia [18] uses GoogLeNet [19] architecture to recognize RGB
American Sign Language (ASL) fingerspelling with over 90%
accuracy. Visual devices such as Kinect [20] and Leap Motion
Controller [21], which use depth cameras, have become popu-
lar in gesture recognition. The dual-path depth-aware attention
network [22] has been proposed to recognize RGB-D ASL
to improve accuracy. However, the end-to-end methods are
computationally-intensive and parameter-intensive, resulting in
increased power consumption and delay for embedded systems
as the CNN models become more complex with more detailed
input images.

2) Feature Extraction and Classification Methods: In the
field of gesture recognition, feature extraction is crucial. Ges-
ture features are extracted to reduce information and improve
classification accuracy. One commonly used method is gesture
segmentation, which separates gestures from the background
based on attributes such as color, depth, and edge. Huang
et al. [23] segment the RGB hand region based on skin color
and gesture contour and recognize 10 number gestures with a
CNN model, achieving 98.41% accuracy. Depth can effectively
handle illumination issues. The Kinect contains information
about the human skeleton, and Wang et al. [7] utilize the
Kinect skeleton tracking system to separate the RGB-D gesture
for embedded CNN recognition, achieving 99.96% accuracy
on the ASL dataset. It is true that segmented gestures achieve
good recognition results, but the redundant information in
the segmented gestures still results in high parameters and
calculations.

To remove redundant information in segmented gestures,
several studies have achieved effective recognition results by
further extracting segmented gestures. For example, in the
study by Lu et al. [5], the four sides of the segmented
gesture are taken as input for a two-layer CNN, achieving
a recognition accuracy of 90.3% for six static gestures. The
combination of these static gestures results in 24 dynamic ges-
tures. However, this method just suitable for simple gestures.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

322 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

Fig. 1. The proposed sparse edge gesture recognition algorithm. After pre-processing, sparse edge gesture images can be extracted. A lightweight sparse
BNN architecture is proposed for sparse edge gesture classification. (a) The RGB gesture images, (b) the depth gesture images, (c) the binarized gesture
images, and (d) the sparse edge gesture images.

Abdulhussein et al. [24] apply the SEG image that is the
segmented gesture’s outline as input for recognition using
a 4-layer CNN, which achieves an accuracy of 99.3%
on recognizing 26 ASL gestures with many computations
and parameters. However, most gesture recognition meth-
ods are limited to the CNN recognition models, which
are computation-intensive and parameter-intensive, leading to
energy inefficiency. Our goal is to develop a low-parameter,
low-computing algorithm for SEG images with high accuracy
and build an energy-efficient gesture recognition accelerator
for embedded systems with low latency.

III. PROPOSED SEG RECOGNITION ALGORITHM

Figure 1 depicts the proposed SEG recognition algorithm.
The algorithm comprises two main blocks: pre-processing
and a lightweight sBNN architecture. For SEG recognition,
we employ four general-purpose open-source gesture datasets,
namely, RGB-D gesture dataset (RGBDGES) [25], [26], RGB-
DASL [8], RGBASL [27], and GRAYASL [28]. SEG images
are generated through pre-processing, which includes gesture
segmentation and edge detection. To recognize SEGs, we pro-
pose a lightweight sBNN architecture. The SEG images are
cropped and input to the lightweight sBNN architecture for
gesture recognition. The recognition results are then converted
into text and displayed. In addition, we introduce channel-level
SAV in sBNN according to the sparsity of the SEG input
image, and we adopt SAV padding to increase the number
of SAV. The detailed functionalities of each block will be
described in the following subsections.

A. Pre-Processing

Several CNN models employ RGB-D, depth, or RGB
gestures to achieve high recognition performance, increasing
power consumption in embedded systems. In contrast, our
experiments demonstrate that gesture shape, as a distinguish-
able feature of gestures, can meet recognition requirements
for a wide range of gesture recognition tasks. Figure 1 (d)
displays SEG images from various datasets. Due to their 1-bit
and sparse properties, SEG images reduce the computations
of the sBNN model during forward inference. We conduct

Fig. 2. The operations of pre-processing.

Fig. 3. Our sparse BNN architecture with a kernel size 3 × 3 for all filters
for sparse edge gesture classification.

gesture segmentation to generate binarized gestures. For the
RGBDGES and RGBDASL, the gesture segmentation is based
on depth gestures, and the hand closest to the camera is
prioritized. For RGBASL, skin color detection algorithms are
used for gesture segmentation. For GRAYASL, gesture seg-
mentation is already completed. After gesture segmentation,
the edges of the binarized gestures are extracted using the
edge detection method to generate SEGs.

As shown in Figure 2, we use an RGB-D image to illustrate
the four steps in the pre-processing stage: skin color/depth
detection, segmentation, median filtering, and finding contours.
Initially, skin color/depth detection extracts the gesture area
by either analyzing the skin color distribution within the
color field or relying on the principle that the gesture is
closest to the acquisition device. Then, all of the subsequent
steps contribute to the generation of a sparse edge gesture.
In addition, gesture recognition pre-processing usually occurs
on the acquisition device to avoid high data storage and

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 323

TABLE I
THE DETAILED ARCHITECTURE OF THE SBNN MODEL

FOR GESTURE DATASETS

handling costs in hardware accelerators. Many acquisition
devices integrate various image processing operations and
provide unique processing application programming inter-
faces, providing more powerful and diversified pre-processing
methods. In our demonstration system, we utilize a PC to
emulate the pre-processing operations typically performed by
the acquisition device for input gestures. The post-processing
gesture is streamed in real-time to the Genesys2 board through
HDMI.

B. Lightweight sBNN Architecture for SEGs Classification

Figure 3 illustrates the proposed lightweight sBNN architec-
ture. To accommodate the binary nature of the SEG image, the
first convolutional layer of sBNN employs a binary convolu-
tional (BConv) layer instead of the MAC convolutional layer.
Specifically, the 1st, 2nd, and 3rd BConv layers have 16 output
channels of a kernel size 3×3 with stride 1, 32 output channels
of a kernel size 3 × 3 with stride 1, and 64 output channels
of a kernel size 3 × 3 with stride 1, respectively. Moreover,

a binary fully connected (BFC) layer followed by a PReLU
activation layer and a batch normalization (BN) layer, with
a size of 4096, is also included in sBNN. Each BConv
layer is followed by an absolute (abs) activation layer and
an average pooling layer (avgpooling) with a kernel size of
2 × 2 and stride 2. In addition, the BN layer, PReLU layer,
and binary HardTanh activation (BinaryTanh) layer are applied
to the outputs from the avgpooling layer. The BinaryTanh
layer binarizes the output activation maps, which become the
next layer’s input activation maps. All convolution calculations
are performed with XNOR-Popcount. Table I shows that
the sBNN model incorporates several BConv and avgpooling
layers with specific layer sizes and dimensions.

Benefiting from weight and activation constraints of +1
and −1, sBNN models can replace MAC operations with
XNOR-Popcount operations by binarizing both the weights
and activations using the sign function, where

sign(x) =

{
1, if x ≥ 0
−1, if x < 0.

(1)

During forward inference, the sBNN model undergoes sev-
eral calculation processes, including the BConv layer, the abs
activation layer, the avgpooling layer, the BN layer, the PReLU
layer, and the binary HardTanh activation layer, which are
executed in the following sequence

YBConv = sign(I) ⊙ sign(W),

Yabs = abs(YBConv),

Yavgpooling =
1

|Ri j |

∑
(p,q)ϵRi j

(Yabs)pq ,

YB N =
Yavgpooling − µ

√

σ 2
γ + β,

YP ReLU =

{
YB N , ifYB N > 0
αYB N , ifYB N ≤ 0,

YHardT anh =

1, if YP ReLU > 1
-1, if YP ReLU < −1
YP ReLU , otherwise,

Ybinari zed = sign(YHardT anh), (2)

where ⊙, Ri j , |Ri j |, i and j represent the XNOR-Popcount
convolution operations, avgpooling array, the number of
parameters in avgpooling array, width and height of avgpool-
ing array, respectively. Additionally, I, W, and Y represent the
input activation maps, the weight data, and the output activa-
tion maps. As the parameter α in the PReLU activation layer
is typically greater than 0, it does not impact the sign of YB N
and can be excluded during forward inference. Likewise, the
HardTanh activation layer can also be disregarded. Therefore,
Ybinari zed is solely determined by the sign of YB N .

To reduce MAC computations, the BN layer can be further
optimized by converting the MAC operation into a comparison
process [29]. It is essential to extract the comparison thresholds
for the BN layer. The BN layer’s parameters are known in
the forward inference, and its calculations for each output
channel can be viewed as a linear function. The comparison

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

324 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

Fig. 4. The processes of generating output sparse activation vector and
effective activation vector. (a) In the BConv1 layer, the output sparse activation
vector and effective activation vector are generated by the 3 × 3 inputs filled
with only -1 and at least one +1, respectively. (b) In the BConv2 layer, the
output sparse activation vector and effective activation vector are generated
by the 3 × 3 inputs filled with only input sparse activation vector and at least
one input effective activation vector, respectively.

threshold for each output channel, which is the result of
the linear function equal to zero, can be pre-calculated and
called T hB N . The PReLU activation and BN layers after BFC
require MAC operations to obtain the final classification. The
detailed architecture of the sBNN model for gesture datasets
is presented in Table I, where C is the channel, H is the
height, and W is the width. The lightweight sBNN architecture
achieves high recognition accuracy with a small number of
parameters and operations. For example, the sBNN model
attains 95.34% accuracy with only 20.25 MOP and 14.83 KB
parameters for the RGBDASL dataset.

C. Channel-Level Sparse Activation Vectors

The sparsity of the SEG image causes a significant number
of pixels to be set to −1, resulting in numerous 3 × 3 blocks
containing only −1 values. When the 3×3 block is convoluted
with the weights in the BConv1 layer, the output of each
channel remains constant during forward inference due to the
known input and weight data. As shown in Figure 4 (a), the
BConv1 layer has 16 output channels with a kernel size of
3 × 3, producing 16 invariant constants when a 3 × 3 input
is filled with only −1 values. After the abs, avgpooling,
BN-PReLU, and BinaryTanh layers, the results whose size is
1 × 1×16 are named output SAV. The high number of 3 ×

3 inputs filled with only −1 values in the SEG image generates
numerous SAVs in the BConv1 layer. Other output vectors that
differ from SAV are called output effective activation vectors
(EAV), whose corresponding input is a 3 × 3 block with at
least one +1 value. When used as input at the next layer,
the output SAV and EAV will become the input SAV and
input EAV.

Fig. 5. Sparse activation vector padding replaces the zero padding to increase
the proportion of sparse activation vector in ifmaps.

Fig. 6. Two types of predicted values are obtained during offline value
prediction.

Figure 4 (b) illustrates that the BConv2 layer has 32 output
channels of a kernel size 3 × 3, producing a new output
SAV when a 3 × 3 input is filled with only input SAV. The
size of the output SAV is 1 × 1×32. In contrast, a new
output EAV is generated when the 3 × 3 input of this layer
includes at least one input EAV. Since the input activation
maps exist numerous SAVs in the BConv2 layer, output SAV
also occupies a higher proportion in output activation maps.
Similarly, for the BConv3 layer, the output SAV is generated
by a 3 × 3 input filled with only input SAV. It should be
noted that the SAV sizes are inconsistent across layers, with
1 × 1×16, 1 × 1×32, and 1 × 1×64 in the 1st, 2nd, and 3rd
BConv layers, respectively. During forward inference, the SAV
of each layer can be predicted directly.

The SAV can be predicted in advance and has a high
proportion in activation maps, allowing hardware design to
skip calculations and compress data. Increasing the pro-
portion of SAV in the input activation maps will improve
the data-compression effect and calculation-skipping amount.
Based on the computation process and the generation principle
of SAV in the entire sBNN, we find that using SAV padding
can introduce a higher proportion of SAV and more repeated
computations to the input activation maps of each layer.
Besides, zero padding is currently the most used padding
method in BNN and produces the most potent recognition
effect. However, it introduces ternary calculation (−1, 0, +1)
to the convolution computation, complicating the BNN con-
volution computation. SAV padding can solve this problem
because all values in SAV are either −1 or +1.

As shown in Figure 5, we utilize the input SAV of each
layer as SAV padding, which increases the proportion of
SAV in each input activation image. SAV is a channel-level
highly repetitive special vector which is a collection of special
elements in each channel. The SAV padding of each input
channel is the sparse element of that channel. In addition,
SAV padding is added during training and constantly updated

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 325

TABLE II
THE PROPORTION OF SAV AT EACH BCONV LAYER AND ACCURACY FOR VARIOUS DATASETS

Fig. 7. Prior distribution map is generated by predicted sparse activation
vector.

Fig. 8. A 4×4 prior distribution map block, obtained by a 4×4 convolution
window slides with a stride of 2 on the prior distribution map, can be divided
into four 3 × 3 prior distribution map blocks.

once weights are adjusted. During sBNN training, calculations
are divided into forward calculation, reverse calculation, and
weight updating. As the weights are constant values in the
forward calculation, the SAV padding for each layer will
temporarily remain the same. When the 3 × 3 SAV is used as
an input block, the generated output SAV will be employed as
SAV padding for the next layer. In addition, the SAV padding
value of each channel is a random number (+1 or −1), which
is changed when the weights are updated.

Table II illustrates the proportions of SAV in each BConv
layer and accuracy for each dataset with zero padding and
SAV padding. The SEG with the highest edge count, called the
largest edge gesture (LGE), and the SEG with the lowest edge
count, called the smallest edge gesture (SME), represent the
maximum and minimum edge counts, respectively. Compared
with zero padding, SAV padding brings a significantly higher
proportion of SAV to the input activation map of each layer,
with only a minor trade-off in accuracy. The increase in
SAV proportion will bring better compression and acceleration
effects to the sBNN hardware.

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS

ON THE RGBDASL DATASET

D. Network Evaluation

To achieve an energy-efficient gesture recognition acceler-
ator, we make a trade-off between accuracy and parameter-
computation. As shown in Table III, we compare our proposed
sBNN models with various gesture classification methods on
the RGBDASL dataset. Traditional machine learning algo-
rithms such as random forest [8] and support vector machine
(SVM) [30] are not effective at gesture recognition. Although
the CNN models [7], [31], [32], [33] can obtain extremely high
recognition accuracy, they require a large number of parame-
ters and calculations. CNN’s calculations and parameters are
measured after int-8 weight/activation quantization. Compared
with state-of-the-arts, our sBNN sacrifices accuracy (about
4%) to reduce more than 10x calculations and parameters,
which reduces storage and calculation cycles and optimizes the
energy efficiency of our gesture accelerator. Our sBNN only
requires 14.83 KB parameters and 20.25 MOP calculations for
the RGBDASL dataset.

IV. VALUE PREDICTION AND CHANNEL-LEVEL SAM
COMPRESSION APPROACHES

In Section III, we present a detailed description of our
proposed sBNN architecture and highlight the significant pres-
ence of SAV in the activation map. We have confirmed many
SAVs in activation maps and high-repetition calculations in
sBNN, which can be further optimized. To improve the energy
efficiency of the sBNN, we focus on two main approaches:
1) accelerating sBNN by utilizing a two-stage value prediction
and 2) exploiting channel-level sparsity to compress and
decompress SAM.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

Fig. 9. Filter-level and group-level skipping modes in online value prediction
method.

A. Energy-Efficient Two-Stage Value Prediction

Value prediction is a technology used in micro-architecture
to increase instruction-level parallelism in out-of-order proces-
sor cores [34]. It is also used in CNN to exploit the spatial
correlation inherent and skip part of the MAC operations
[35]. However, the value prediction technique may cause
recalculations after pipeline flush when a prediction error
occurs or comes at the cost of some accuracy.

To solve the problems, we propose a two-stage value pre-
diction approach to achieve infallible prediction and absolutely
no recalculation, increasing energy efficiency in sBNN. Using
SEG input introduces numerous SAVs in each layer’s input
activation maps, which leads to repeated computations. Our
two-stage value prediction method can skip these repeated
computations. In the first stage, we infallibly predict the output
SAV values for each layer in advance using offline value
prediction. In the second stage, the hardware performs online
calculations to complete the non-repeated part of the com-
putations. In contrast, predicted SAVs, the results of repeated
calculations, are buffered in hardware to omit the calculations.
We obtain infallible results through the two-stage value predic-
tion approach while skipping repeated calculations, achieving
higher energy efficiency without compromising accuracy.

1) Stage 1: Offline Value Prediction: The offline value
prediction can infallibly predict the SAV values of each layer
based on known weights, preparing for calculation skipping
in hardware. When the model is retrained, the SAV of each
layer can be obtained at a negligible cost.

There are two types of SAV that are predicted in advance
by the offline value prediction. The first type is pre-pooling
SAVs which are the BConv results before the avgpooling layer.
The second type is post-pooling SAVs, representing binarized
activation vectors after avgpooling and the BinaryTanh layer.
Figure 6 shows that when a 4 × 4 SAV block is provided
as input under known weights, the offline value prediction
method generates 2 × 2 pre-pooling SAVs for each output
channel. During the subsequent avgpooling operation, these
pre-pooling SAVs are accumulated, and a post-pooling SAV
is obtained after the BN-PReLU and BinaryTanh layers.

2) Stage 2: Online Value Prediction: The online value
prediction can skip repeated calculations based on offline
predicted SAV, avoiding the negative effects of traditional
value prediction techniques (e.g., recalculation process and

Fig. 10. Sparse activation map compression and decompression. (a) The orig-
inal activation maps, (b) compressed data after compression, and (c) decom-
pression operations.

recognition accuracy degradation). In traditional convolution
processes, the convolution kernel slides over the input activa-
tion maps, requiring continuous access to the repeated SAV,
which leads to repeated calculations. Online value prediction
technology applies offline predicted SAV to encode online
activation maps. By obtaining the distribution of SAV and EAV
in advance during the calculation of the next layer, only the
convolution with EAV is calculated, and the convolution result
corresponding to SAV is provided by the offline predicted
SAV of the next layer. The offline value prediction is divided
into two processes. First, a prior distribution map (PDM) is
generated based on the predicted SAV for representing the
distribution of SAV and EAV in the output activation maps. It
is then determined whether to perform or skip the convolution
calculation based on whether includes 1 value in the 3 × 3
PDM block. When there exit no 1 in the 3×3 PDM block, the
redundant convolution calculation will be skipped. Otherwise,
valid computations continue to be performed.

In Figure 7, a PDM is generated for the entire SAM based
on the comparison with predicted SAV. Each value of the PDM
is 1-bit, where 0 indicates SAV data, and 1 indicates EAV data.
The size of the PDM is [Hin , Win], which is the same as the
input activation maps. Once the PDM is obtained, convolution
calculations are performed by sliding on the PDM, as shown
in Figure 8. Since there is an avgpooling layer in the model,
a 4 × 4 sliding window size and a stride of 2 are used for
convolution calculations. Each sliding window contains four
3×3 PDM blocks, where each 3×3 PDM block represents an
entire convolution calculation. We classify each 3 × 3 PDM
block into two types: the 3 × 3 PDM block with only 0 is
called a sparse PDM block, and the others are called efficient
PDM blocks.

When the four 3 × 3 PDM blocks enter the calculation,
online value prediction will appear in two calculation skipping
modes: filter-level skipping and group-level skipping, as shown
in Figure 9. In the filter-level skipping mode, the four PDM
blocks exit at least one efficient PDM block, and only the
efficient PDM blocks will be calculated. The calculations
for the sparse PDM blocks are skipped, and the results are

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 327

Fig. 11. The overall architecture of our sparse BNN accelerator.

Fig. 12. The architecture of network on chip.

pre-pooling SAV obtained from offline value prediction. The
results of the four PDM blocks are accumulated to generate a
new EAV. In the group-level skipping mode, four PDM blocks
are sparse PDM blocks, and all calculations are skipped.
Then the result is the post-pooling SAV provided by offline
prediction.

B. Channel-Level SAM Compression and Decompression

To enhance energy efficiency further, we apply the SAM
compression and decompression approach for numerous iden-
tical SAVs, storing EAV and encoding information. By the
variant of the compress sparse row format [36], we replace
the column coordinates with the PDM and save the first EAV
address, as shown in Figure 10 (b). Upon entering the next
BConv layer, the compressed SAM is decompressed to provide
input data for convolution calculations.

The compression ratio (CR) is the result of dividing uncom-
pressed data by compressed data. For each layer, the size

of output activation maps is [Hout , Wout , Cout]. The size
of the first EAV address is M×Hout bits. M equals to
ceiling(log2Wout), and the ceiling function gives the smallest
nearest integer that is greater than or equal to the specified
value. The size of PDM is Hout×Wout bits. EAV values are
N×Cout bits, where N is the number of EAV values. Therefore,
the compressed data (CD) is

C D = M × Hout + Hout × Wout + N × Cout . (3)

The CR is calculated as

C R =
Uncomressed Data

Comressed Data
,

=
Hout × Wout × Cout

C D
. (4)

Figure 10 (c) shows the decompression operations. The
efficient PDM block selected by value prediction represents a
non-repeated convolution calculation. The data decompression
operations involve reading the EAV data based on the efficient
PDM block and the first EAV address, then recombining the
input data with the predicted SAV.

V. HARDWARE IMPLEMENTATION

A. Overall Architecture

In the previous sections, we introduce the proposed SEG
recognition algorithm, two-stage value prediction approach,
and channel-level SAM compression method. Next, we intro-
duce the hardware implementation of the SBA. The overall
architecture of our SBA consists of a 15.83KB Weight
Buffer, an Activation Buffer, a Calculation Unit, and an
Energy-Efficient Value Prediction and SAM Compression
Unit (VPASCU), as shown in Figure 11. In addition, our

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

328 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

Fig. 13. Kernel-wise mapping process.

SEG images are transmitted to the FPGA through the
high-definition multimedia interface (HDMI). The weight
data is loaded into the Weight Buffer, and the gesture
classification is sent out through a universal asynchronous
receiver/transmitter (UART).

B. Calculation Unit

The Calculation Unit is responsible for all calculation oper-
ations in sBNN, such as convolution, avgpooling, activation,
comparison, and PReLU-BN (after BFC layer) calculations. It
comprises a flexible Network-on-Chip (NoC), 32 Calculation
Cores, a Hierarchical Adder Tree, and a Subsequent Processing
Unit (SPU). Each Calculation Core contains 16 Processing
Element (PE) Tiles which can perform 3×3 XNOR-Popcount
operations. The Calculation Cores and Hierarchical Adder
Tree only perform convolution calculations, while the SPU
handles the other operations. The Calculation Unit can perform
up to 4608 (32×16×3×3) XNOR-Popcount operations at each
cycle. The Predicted Buffer in the SPU stores the predicted
SAV (both pre-pooling SAV and post-pooling SAV) obtained
from offline value prediction. Each element in the output pre-
pooling SAV of BConv1, BConv2, and BConv3 layers is 4-bit,
8-bit, and 9-bit respectively. The output post-pooling SAV of
BConv1, BConv2, and BConv3 layers is 16-bit, 32-bit, and
64-bit respectively. The pre-pooling SAV will participate in
the accumulation process of the pooling layer, and the post-
pooling SAV is transmitted to VPASCU for SAV compression
and decompression.

Fig. 14. The Sparse activation map compression unit.

The computing characteristics (e.g., input channel, output
channel, and spatial size of activation maps) of each layer in
sBNN are different, which may lead to the underutilization
of hardware resources. We propose flexible NoC and Hierar-
chical Adder Tree to efficiently implement the deployment
of sBNN based on the kernel-wise mapping. The NoC is
crucial in transmitting activation and weight data between
Calculation Cores and their respective PE Tiles. The NoC
supports unicast-multicast transmission in vertical and hori-
zontal directions for each PE Tile, as shown in Figure 12.
The four transmission modes available are Y-multicast (❶),
Y-unicast (❷), X-multicast (❸), and X-unicast (❹). Based on
unicast-multicast transmission ability, weight and input data
can be efficiently transmitted to each PE Tile, increasing PE
utilization and accelerating calculations.

The Hierarchical Adder Tree efficiently accumulates results
from the PE Tiles and reuses computing resources. As shown
in Figure 11, for the BConv1 layer, the output of each PE Tile
is the BConv1 result, and the Hierarchical Adder Tree is not
used. For the remaining layers, the final result is obtained by
summing up the results of all input channels. Moreover, the
input channels continue to increase as the number of layers
increases, and the BConv result of the current layer may be
a partial sum of the next layer. Especially in the BFC layer,
the sum of results from PE Tiles used yields one BFC result.
The Hierarchical Adder Tree adds up the results from most
PE Tiles for the BFC layer.

Figure 13 illustrates the efficient kernel-wise mapping
process for the sBNN model, achieving 100% and 88.9%
PE utilization rates for the BConv and the BFC layers,
respectively. The BConv1 layer requires 9 (1 × 3×3) XNOR-
Popcount operations to produce a convolution result in each
channel. The Calculation Cores within the same column
perform computations for identical output channels, which
allows 32 Calculation Cores to calculate 16 output channels
simultaneously. In addition, each Calculation Core contains
16 PE Tiles, which can simultaneously handle 16 convolution

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 329

TABLE IV
DETAILED RESOURCE AND POWER

calculations and generate 16 convolution results. The BConv2
layer requires 144 (16 × 3×3) XNOR-Popcount operations
to produce a convolution result in each channel. 32 Calcula-
tion Cores simultaneously calculate 32 output channels and
generate 32 convolution results. The BConv3 layer requires
288 (32 × 3×3) XNOR-Popcount operations to produce a
convolution result in each channel. The Calculation Cores
within the same column perform computations for identical
output channels, which allows 32 Calculation Cores to calcu-
late 16 output channels and generate 16 convolution results
simultaneously. In the BConv3 layer, 64 output channels need
four loops to complete the calculation. The BFC layer requires
4096 XNOR-Popcount operations to produce a BFC result.
To achieve efficient calculations, we distribute the calculation
of 4096 to 29 (4096/(16 × 3×3)) Calculation Cores.

C. Energy-Efficient VPASCU

The Energy-Efficient VPASCU is designed to enhance the
energy efficiency of SBA through data storage reduction by
SAM compression and decompression and repeated calcu-
lation skipping by leveraging the two-stage value prediction
approach. It consists of an SAM Compression Unit, a Com-
pressed Data Buffer, and a Prediction and Decompression
Unit comprising the Value Prediction Unit, EAV Address
Unit, and Activation Recovery Unit. The EAV Address Unit
and Activation Recovery Unit make up the Decompressed
Unit. Activation vectors generated by the SPU undergo further
processing by the SAM Compression Unit.

The SAM Compression Unit plays a vital role in achieving
energy efficiency in SBA by compressing the SAM with
minimal resource consumption, thereby reducing the amount
of stored data and power consumption of data reading and
writing. It includes a SAV Filter, an EAV Counter, and a
PDM Generator, as shown in Figure 14. Upon receiving an
activation vector and its valid signal from the SPU, the SAV
Filter discards the SAV value and saves the EAV value by
comparing the activation vector with the predicted SAV. Then
the EAV count is incremented by 1, and the corresponding
PDM position is marked with a value of 1 by the PDM
Generator. When receiving the last activation vector of a
row, the SAM Compression Unit saves the EAV Counter and
PDM values to the Compressed Data Buffer, where the EAV
Counter is the next row’s first address. Finally, the output
EAV, the PDM, and the first EAV address are stored into EAV
Regbanks, PDM Regbanks, and First EAV Address Regbanks
respectively.

Fig. 15. Two tables for filter-level and group-level skipping are generated
for value prediction.

When entering the next layer, the Value Prediction Unit
efficiently accelerates convolution calculations and reduces
computing power consumption by separating repeated calcu-
lations from non-repeated calculations and only performing
the latter. The Value Prediction Unit performs a two-step
operation: the first step generates two prediction tables for
filter-level and group-level skipping. In contrast, the second
step is online prediction flow which selects non-repeated
calculations and skips repeated calculations based on these
tables.

Figure 15 illustrates generating two prediction tables for
group-level and filter-level skipping. Each Calculation Bit-map
Generator first divides the 4 × 4 PDM block into four 3 × 3
PDM blocks. Then it performs Reduction OR operations on
each 3 × 3 PDM block to form a filter-level skipping value.
Finally, it performs Reduction OR functions on four filter-level
skipping values to create the group-level skipping value. Two
prediction tables are generated when computing all 4 × 4
PDM blocks in one row. Filter-level and group-level skipping
prediction tables correspond to the calculations of the 3 × 3
PDM block and 4 × 4 PDM block, respectively.

The online prediction flow with two prediction tables is
shown in Figure 16. If the value in the prediction table of
group-level skipping is 0, all subsequent calculations can
be skipped, and the results are predicted SAV. Otherwise,
we reorganize the 3 × 3 PDM blocks based on the value in
the filter-level skipping prediction table. The effective PDM
blocks are sent to the Decompression Unit in order, and the
decompressed data is sent to the Calculation Unit to generate
the BConv results. Finally, the predicted pre-pooling SAV is
added to the avgpooling results in the last cycle. The two
prediction tables for five 4 × 4 PDM blocks, which have
different skipping cases, are illustrated in Figure 17. The total
calculation time for the five 4 × 4 PDM blocks is ten cycles,
with ten calculation cycles saved.

The Decompression Unit is responsible for recovering the
compressed data. When it receives an effective PDM block,
the Address Generator Unit generates the addresses pointing
to EAV and predicted SAV values based on the pointer and

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

Fig. 16. Online prediction flow.

TABLE V
COMPRESSION RATE AND SPEEDUP WITH ENERGY-EFFICIENT APPROACHES

Fig. 17. The timeline of different calculations skipping cases.

Fig. 18. Decompression unit.

the first EAV address, as shown in Figure 18. The pointer
indicates the leftmost position of the 3 × 3 PDM block. If the
value in the block is 0, the predicted SAV is read. Otherwise,

Fig. 19. The sparse BNN accelerator recognition demo with the Genesys2
board.

the EAV is read. In this way, the Activation Recovery Unit
generates a 3 × 3×Cin activation input. Finally, the activation
input is sent to the Activation Buffer.

The bandwidths of EAV and SAV are different because SAV
is just a special activation vector with a high repetition rate,
and EAV is a collection of all other activation vectors. The
EAV and SAV in BConv1, BConv2, and BConv3 layers are
16-bit, 32-bit, and 64-bit respectively. Redundant calculations
can be skipped according to the PDM, and the remaining
calculations need to be returned to the original 3×3 activation
input. At this time, the corresponding EAV and SAV will be
read to reassemble the original input activation block. Because
the EAV is stored in register banks, an array of registers, it is

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 331

TABLE VI
COMPARISON WITH OTHER WORKS ON FPGA

supported to read and write 9 EAV at the same time. Therefore,
increasing the data bit-width of the on-chip memory improves
the data bandwidth and avoids spending too much time on
data acquisition.

D. Evaluation
Table IV shows our SBA’s resource utilization and power

on the Genesys2 board for the RGBDASL dataset, with a
clock frequency of 50 MHz. The entire SBA requires 15.83KB
of memory to store all weight parameters. The PReLU-BN
layer after the BFC layer can be considered multiple MAC
operations, with the number of MACs equivalent to the number
of gesture classifications. The power consumption of the SBA
is 0.807W. The SBA recognition demo on the FPGA board is
illustrated in Figure 19. We load different weight parameters
to recognize the SEGs from gesture datasets. The SEGs are
streamed real-time from the PC to the Genesys2 board through
the HDMI. The classifications from the SBA are sent back to
the PC through UART.

We have presented the percentage of SAV in each
layer’s SAM and described our energy-efficient optimization
approaches. To demonstrate the effectiveness of our data
compression and value prediction approaches, we provide
the amount of data after compression and the computa-
tion cycles required for each layer. Table V shows the
compression ratio achieved after compressing SAM and the
speedup achieved with two-stage value prediction. We also
develop a real-time dense BNN accelerator (DBA) without
energy-efficient approaches for comparison. The total amount
of uncompressed data in all ofmaps is 3.5KB. We select LGE
and SME images from each dataset to obtain the best and
worst compression ratios.

According to the data amount in Table V, the compression
effect of the SBA decreases as we move from one layer to the
next, with BConv1 exhibiting the most effective compression
and BConv3 showing the worst. Compared to the DBA, the
SBA achieves a CR of 1.72x - 3.45x. The calculation cycles
and acceleration effect are shown on the right of Table V. The
BConv1 calculation with a 100% PE utilization rate does not
involve value prediction, and the BFC layer does not contain
SAV. So there is no acceleration in the BConv1 and BFC
layers. The BConv1 layer takes 141 cycles for each dataset.
The cycles throughout the BFC layer are proportional to the
number of classes, and each class requires seven cycles. In

contrast, the BConv2 and BConv3 layers show significant
acceleration effects due to the value prediction approach. For
the BConv3 layer, the acceleration effect is less optimized
since the value prediction approach increases cycles when
the input activation maps exist a small number of SAV. We
calculate the total computation cycles and obtain the speedup,
revealing that our SBA achieves a 1.03x - 1.83x acceleration
effect compared to the DBA. In addition, the pre-processing
part only consumes 1994 µs running on the PC, which is
lower than other works [7], [37], [38], [39] and can be reduced
by hardware realization. The overall processing time is about
2020.3 - 2040.8µs.

In Table VI, the SBA outperforms the DBA in latency,
power consumption, and energy efficiency thanks to the
two-stage value prediction and activation maps compression
and decompression approaches. Specifically, our SBA achieves
a latency of 26.3 - 46.8 µs and a power consumption
of 0.807 W, improving energy efficiency to 536.22 - 952.70
GOPS/W. Unlike end-to-end accelerators, our SBA prepro-
cesses raw images on the PC before recognizing them on
the hardware. Compared with end-to-end accelerators, non-
end-to-end gesture recognition accelerators have a significant
improvement in energy efficiency. By removing the back-
ground or noise from the image, pre-processing reduces
calculations and parameters. During recognition, power con-
sumption and delay are reduced, improving energy efficiency.
Different CNN networks are mapped into FPGA for RGB-
DASL dataset in these works [7], [37], [38], [39], we compare
the performance in terms of power, latency, and energy
efficiency. As shown in Table VI, our SBA has the lowest
latency and highest energy efficiency in the non-end-to-end
accelerators.

VI. CONCLUSION

In this paper, we present a sparse BNN accelerator with
value prediction for real-time edge gesture recognition on an
FPGA board. We apply energy-efficient approaches for SBA,
including two-stage value prediction and channel-level spar-
sity activation compression and decompression. The energy-
efficient two-stage value prediction approach can skip repeated
calculations to speed up sBNN computation and reduce power
consumption. Furthermore, the channel-level sparse activa-
tion compression and decompression method can reduce the
required data storage. Evaluations show that the sparse BNN

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

332 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 1, JANUARY 2024

accelerator can achieve state-of-the-art performance in latency
and energy efficiency.

REFERENCES

[1] S. Subburaj and S. Murugavalli, “Survey on sign language recognition
in context of vision-based and deep learning,” Meas., Sensors, vol. 23,
Oct. 2022, Art. no. 100385.

[2] P. Goswami, S. Rao, S. Bharadwaj, and A. Nguyen, “Real-time multi-
gesture recognition using 77 GHz FMCW MIMO single chip radar,” in
Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2019, pp. 1–4.

[3] J. Pan, Y. Luo, Y. Li, C.-K. Tham, C.-H. Heng, and A. V.-Y. Thean,
“A wireless multi-channel capacitive sensor system for efficient glove-
based gesture recognition with AI at the edge,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 67, no. 9, pp. 1624–1628, Sep. 2020.

[4] P. Haque, B. Das, and N. N. Kaspy, “Two-handed Bangla Sign Lan-
guage recognition using principal component analysis (PCA) and KNN
algorithm,” in Proc. Int. Conf. Electr., Comput. Commun. Eng. (ECCE),
Feb. 2019, pp. 1–4.

[5] Y. Lu, V. L. Le, and T. T. Kim, “9.7 A 184 µW real-time hand-
gesture recognition system with hybrid tiny classifiers for smart wearable
devices,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, vol. 64, Feb. 2021, pp. 156–158.

[6] S. Sharma and S. Singh, “Vision-based hand gesture recognition using
deep learning for the interpretation of sign language,” Expert Syst. Appl.,
vol. 182, Nov. 2021, Art. no. 115657.

[7] C.-C. Wang et al., “Real-time block-based embedded CNN for gesture
classification on an FPGA,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 10, pp. 4182–4193, Oct. 2021.

[8] N. Pugeault and R. Bowden, “Spelling it out: Real-time ASL finger-
spelling recognition,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops
(ICCV Workshops), Nov. 2011, pp. 1114–1119.

[9] P. Guo et al., “FBNA: A fully binarized neural network accelerator,”
in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,
pp. 51–513.

[10] M. Jaiswal, V. Sharma, A. Sharma, S. Saini, and R. Tomar, “An effi-
cient binarized neural network for recognizing two hands Indian Sign
Language gestures in real-time environment,” in Proc. IEEE 17th India
Council Int. Conf. (INDICON), Dec. 2020, pp. 1–6.

[11] Y.-L. Zhang et al., “A 28 nm, 397 µW real-time dynamic gesture recog-
nition chip based on RISC-V processor,” Microelectron. J., vol. 116,
Oct. 2021, Art. no. 105219.

[12] A. Parashar et al., “SCNN: An accelerator for compressed-sparse con-
volutional neural networks,” SIGARCH Comput. Archit. News, vol. 45,
no. 2, pp. 27–40, May 2017.

[13] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural net-
works,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[14] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in Proc. 29th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Dec. 1996, pp. 226–237.

[15] G. J. Grimes, “Digital data entry glove interface device,” U.S. Patent
4 414 537, Nov. 8, 1983.

[16] K. S. Abhishek, L. C. F. Qubeley, and D. Ho, “Glove-based hand gesture
recognition sign language translator using capacitive touch sensor,” in
Proc. IEEE Int. Conf. Electron Devices Solid-State Circuits (EDSSC),
Aug. 2016, pp. 334–337.

[17] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand
gesture recognition using FMCW radar sensor,” IEEE Sensors J., vol. 18,
no. 8, pp. 3278–3289, Apr. 2018.

[18] B. Garcia and S. A. Viesca, “Real-time American sign language recog-
nition with convolutional neural networks,” Convolutional Neural Netw.
Vis. Recognit., vol. 2, pp. 225–232, 2016. [Online]. Available: http://
vision.stanford.edu/teaching/cs231n/reports/2016/pdfs/214_Report.pdf

[19] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[20] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE Multimedia-
Mag., vol. 19, no. 2, pp. 4–10, Feb. 2012.

[21] C. K. M. Lee, K. K. H. Ng, C.-H. Chen, H. C. W. Lau, S. Y. Chung,
and T. Tsoi, “American sign language recognition and training method
with recurrent neural network,” Expert Syst. Appl., vol. 167, Apr. 2021,
Art. no. 114403.

[22] S.-H. Yang, W.-R. Chen, W.-J. Huang, and Y.-P. Chen, “DDaNet: Dual-
path depth-aware attention network for fingerspelling recognition using
RGB-D images,” IEEE Access, vol. 9, pp. 7306–7322, 2021.

[23] H. Huang, Y. Chong, C. Nie, and S. Pan, “Hand gesture recognition with
skin detection and deep learning method,” J. Phys., Conf. Ser., vol. 1213,
no. 2, Jun. 2019, Art. no. 022001.

[24] A. Abdulhussein and F. Raheem, “Hand gesture recognition of static
letters American Sign Language (ASL) using deep learning,” Eng.
Technol. J., vol. 38, no. 6, pp. 926–937, Jun. 2020.

[25] A. Memo, L. Minto, and P. Zanuttigh, “Exploiting silhouette descrip-
tors and synthetic data for hand gesture recognition,” in Proc. Smart
Tools Apps Comput. Graph. (STAG). Eurographics Association, 2015,
pp. 15–23, doi: 10.2312/stag.20151288.

[26] A. Memo and P. Zanuttigh, “Head-mounted gesture controlled interface
for human–computer interaction,” Multimedia Tools Appl., vol. 77, no. 1,
pp. 27–53, Jan. 2018.

[27] A. L. C. Barczak, N. H. Reyes, M. Abastillas, A. Piccio, and T. Susnjak,
“A new 2D static hand gesture colour image dataset for ASL gestures,”
Res. Lett. Inf. Math. Sci., vol. 15, pp. 12–20, 2011. [Online]. Available:
https://core.ac.uk/download/pdf/148639234.pdf

[28] (2021). Rolandomr. [Online]. Available: https://www.kaggle.com/roland
omr/american-sign-language-recogntion-asl/metadata

[29] T. Geng et al., “LP-BNN: Ultra-low-Latency BNN inference with layer
parallelism,” in Proc. IEEE 30th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), vol. 2160-052X, Jul. 2019, pp. 9–16.

[30] K. O. Rodríguez and G. C. Chávez, “Finger spelling recognition from
RGB-D information using kernel descriptor,” in Proc. 26th Conf. Graph.,
Patterns Images, Aug. 2013, pp. 1–7.

[31] R. G. Rajan and M. J. Leo, “American Sign Language alphabets
recognition using hand crafted and deep learning features,” in Proc.
Int. Conf. Inventive Comput. Technol. (ICICT), Feb. 2020, pp. 430–434.

[32] N. Singla, M. Taneja, N. Goyal, and R. Jindal, “Feature fusion and multi-
stream CNNs for ScaleAdaptive multimodal sign language recognition,”
in Proc. 9th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), vol. 1,
Mar. 2023, pp. 1266–1273.

[33] Z. Han-Wen, H. Ying, Z. Yong-Jia, and W. Cheng-Yu, “Fingerspelling
identification for American sign language based on Resnet-18,” Int. J.
Adv. Netw. Appl., vol. 13, no. 1, pp. 4816–4820, 2021.

[34] F. Gabbay and A. Mendelson, Speculative Execution Based on Value
Prediction. Princeton, NJ, USA: Citeseer, 1996.

[35] G. Shomron and U. Weiser, “Spatial correlation and value prediction
in convolutional neural networks,” IEEE Comput. Archit. Lett., vol. 18,
no. 1, pp. 10–13, Jan. 2019.

[36] M. Pligouroudis, R. A. G. Nuno, and T. Kazmierski, “Modified
compressed sparse row format for accelerated FPGA-based sparse
matrix multiplication,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1–5.

[37] X. Xie, J. Lin, Z. Wang, and J. Wei, “An efficient and flexible accelerator
design for sparse convolutional neural networks,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2936–2949, Jul. 2021.

[38] M. Sun et al., “FILM-QNN: Efficient FPGA acceleration of deep
neural networks with intra-layer, mixed-precision quantization,” in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, Feb. 2022,
pp. 134–145.

[39] C.-T. Chiu et al., “Chaos LiDAR based RGB-D face classification system
with embedded CNN accelerator on FPGAs,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 69, no. 12, pp. 4847–4859, Dec. 2022.

Yongliang Zhang received the B.S. and M.S.
degrees in microelectronics from the Hefei Uni-
versity of Technology, Anhui, China. He is cur-
rently pursuing the Ph.D. degree with the School
of Microelectronics, Fudan University, China. His
current research interests include human–computer
interaction chip technology, energy-efficient gesture
accelerators, and computer vision.

Yitong Rong received the B.E. degree in integrated
circuit design and integrated systems from Xidian
University, Xi’an, China, in 2020. He is currently
pursuing the Ph.D. degree in integrated circuit and
system design with Fudan University, China. His
current research interests include domain-specific
architectures, graph deep learning, and computer
vision.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.2312/stag.20151288

ZHANG et al.: ENERGY-EFFICIENT BNN ACCELERATOR WITH TWO-STAGE VALUE PREDICTION 333

Xuyang Duan received the B.S. degree from Fudan
University, Shanghai, China, in 2021, where he
is currently pursuing the M.S. degree with the
State Key Laboratory of Integrated Chips and
Systems, School of Microelectronics. His current
research interests include energy-efficient VLSI
design, domain-specific architectures, and computer
vision.

Zhen Yang received the M.S. degree in microelec-
tronics and solid electronics from Hunan University,
Changsha, China, in 2005. He is currently pursuing
the Ph.D. degree with the School of Microelectron-
ics, Fudan University, China. His current research
interests include computer architecture, domain-
specific processors, and low power technology.

Qiang Li received the B.S. degree in electron-
ics science and technology from Xidian University,
Xi’an, China, in 2019. He is currently pursuing
the Ph.D. degree with the School of Microelectron-
ics, Fudan University, China. His current research
interests include microarchitecture design method-
ology, system-level power/thermal analysis and
management, and low-power hardware design for
deep-learning.

Ziyu Guo (Member, IEEE) received the B.E.
and Ph.D. degrees from the School of Informa-
tion Science and Engineering, Southeast University,
Nanjing, China, in 2011 and 2016, respectively.
From 2013 to 2015, he was a Visiting Student
with Columbia University, New York, NY, USA.
From 2019 to 2022, he was a Post-Doctoral
Researcher with the State Key Laboratory of ASIC
and System, Fudan University, Shanghai, China. He
is currently an Assistant Professor with the Depart-
ment of Electrical Engineering, Fudan University.

His research interests include millimeter-wave communication and VLSI
design for digital signal processing.

Xu Cheng (Member, IEEE) received the B.S. and
M.S. degrees in electronics engineering from Fudan
University, China, in 1999 and 2002, respectively,
and the Ph.D. degree from University College Cork,
Ireland, in 2007. From 2007 to 2009, he was with
Cypress Semiconductor, Ireland. In 2009, he joined
Fudan University, where he is currently an Asso-
ciate Professor. His current research interests include
energy-efficient analog mixed-signal design and ana-
log CAD.

Xiaoyang Zeng (Member, IEEE) received the B.Sc.
degree from Xiangtan University, Xiangtan, China,
in 1996, and the Ph.D. degree (Hons.) from the
Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, Beijing,
China, in 2001. In 2001, he joined Fudan Univer-
sity, where he was a Post-Doctoral Researcher from
March 2001 to February 2003. Since 2003, he has
been with Fudan University, as a Faculty Member,
where he is currently a Chair Professor and the
Executing Director of the State Key Laboratory of

State Key Laboratory of Integrated Chips and Systems. He has published
more than 200 articles in international journals and conferences, such as IEEE
ISSCC, IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, IEEE TRANSAC-
TIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, IEEE
VLSI Symposia, IEEE CICC, IEEE ESSCIRC, IEEE ASP-DAC, and IEEE
A-SSCC. He has applied for more than 120 patents. His research interests
include information security chips, base-band processing technologies for
wireless communication, mixed-signal IC designs, and ultra-low power IC
methodology.

Jun Han (Member, IEEE) received the B.S. degree
from Xidian University, Shaanxi, China, in 2000,
and the Ph.D. degree in microelectronics from
Fudan University, Shanghai, China, in 2006. In July
2006, he joined Fudan University as an Assistant
Professor, where he is currently a Full Profes-
sor with the State Key Laboratory of Integrated
Chips and Systems. His current research interests
include domain-specific processors and systems for
digital signal processing, machine learning, and
human–computer interaction.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 12,2024 at 03:55:37 UTC from IEEE Xplore. Restrictions apply.

