
Microelectronics Journal 132 (2023) 105679

A
0

Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

SPARK: An automatic Score-Power-Area efficient RISC-V processor
microarchitecture SeeKer
Qiang Li, Jun Tao, Jun Han ∗

State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China

A R T I C L E I N F O

Keywords:
Multi-objective optimization
Design space exploration
Bayesian optimization

A B S T R A C T

In this study, we provide an automatic multi-objective optimization framework for RISC-V processor mi-
croarchitecture. CoreMark benchmark and TSMC 28 nm CMOS process serve as the foundation for SPARK’s
investigation of the design space to SonicBOOM for three design criteria of performance, power, and area. The
sequential-BOED method demonstrates a convergence speed of ADRS 2.125 times faster than baseline thanks
to the benefits of the suggested sampling algorithm RED. In the meantime, the SPARK framework’s SPA-Gen
infrastructure parallelizes querying the VLSI flow of elite trials. Therefore, under the same convergence target
of ADRS as sequential-BOED, the overall running time of Para-BOED algorithm can be further improved by a
factor of 1.29. The official Two-Wide BOOM achieves a commendable compromise between performance score,
power consumption, and area cost. SPARK framework, however, finds an optimal microarchitecture design of
BOOM with improved performance-cost ratio compared to official Two-Wide BOOM within fully acceptable
searching time.
1. Introduction

The open-source RISC-V instruction set architecture (ISA) has re-
cently attracted a lot of interest and active support from both aca-
demics and business. The instruction set architecture is implemented
in hardware by the RISC-V processor microarchitecture. Popular RISC-
V processor generator SonicBOOM [1] from Berkeley is a superscalar
Out-of-Order processor, which fully supports the RV64GC instruction
standard and is particularly competitive with other processors in terms
of performance and power consumption. Chisel [2], widely known as
an agile hardware construct language, is utilized by BOOM designers to
develop a high-performance RISC-V microarchitecture. BOOM includes
an effective hardware parameterization interface and smart negotia-
tion features, which enable designers to explore the design space of
processor microarchitecture. Notably, the BOOM generator and related
SoC resources additionally show accurate microarchitectural hardware
behavior in comparison to platforms that provide open source software
models for high-performance cores, such as gem5 [3], MARSSx86 [4],
Sniper [5], or ZSim [6].

There are numerous parameter combinations for internal compo-
nents of processor, which represent different configurations of hard-
ware implementation. In fact, different parameter selections have dis-
tinct impact on the design metrics of chip under same technology pro-
cess, such as performance, power consumption, and area cost(PPA) [7].
The optimal microarchitecture parameter design is typically believed

∗ Corresponding author.
E-mail address: junhan@fudan.edu.cn (J. Han).

to achieve a superb balance between PPA for considering energy effi-
ciency. The study of microarchitecture optimization, which primarily
comprises two barriers, is challenging to manage. First, there are tens
of millions or even hundreds of millions of possible combinations in the
immense design space of microarchitecture. It is necessary to take into
account processor elements including instruction buffer, issue queues,
vector execution units, and reorder buffer. Designers are therefore
unable to explore and measure every microarchitecture design. Sec-
ond, it takes a significant amount of time and hardware resources to
simulate the processor microarchitecture with large-scale benchmark
and execute VLSI flow to obtain performance measurement. Obviously,
the above costs are restricted by hardware, software, and EDA tools
support.

Traditional industrial solutions have placed a strong focus on prior
engineering expertise from processor architects. Clearly, the prolifera-
tion of new processor is hard to be supported by reliance on specialists.
In academia, researchers have offered a variety of approaches that
can be broadly split into two groups to tackle the aforementioned
challenges. First, build analytical models to map relationships from
design parameter space to design metrics space, and then apply the
model to predict metrics of new unseen designs. For the aim of pre-
dicting performance of designs in the design space. ANN and regression
models were presented in [8–10], respectively, to train a model map-
ping relationship from parameter configuration to design performance.
vailable online 3 January 2023
026-2692/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.mejo.2022.105679
Received 14 November 2022; Received in revised form 8 December 2022; Accepted
 26 December 2022

https://www.elsevier.com/locate/mejo
http://www.elsevier.com/locate/mejo
mailto:junhan@fudan.edu.cn
https://doi.org/10.1016/j.mejo.2022.105679
https://doi.org/10.1016/j.mejo.2022.105679
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2022.105679&domain=pdf

Microelectronics Journal 132 (2023) 105679Q. Li et al.

B
f
w
t
o
S
p

However, due to the high dimensionality and immensity of the design
space, researchers must employ statistical sampling together with pre-
diction models to characterize the microarchitectural design space by
sampling as few samples as feasible. An active learning-based AdaBoost
model and an orthogonal array-based sampling method are suggested
as a combination for exploring the design space of an Out-of-Order
processor [11]. To further reduce simulation times, Bai [12]introduced
the BOOM-Explorer algorithm with embedded microarchitecture prior
knowledge for IPC and power tradeoff, finding a better microarchi-
tecture design than the official Two-Wide BOOM. Secondly, in order
to search more designs within a constrained time budget, researchers
frequently adopt coarse-grained simulation tools rather than register-
transfer-level (RTL) workflows to speed up the procedure of collecting
performance metrics [13,14].

Recent techniques do, however, have some drawbacks. First, prior
research has scarcely proposed appropriate sampling techniques to
lessen the complexity of design space exploration(DSE), ignoring the
representativeness and edginess of designs in design space. On the
other hand, software modeling platforms and coarse-grained simulation
tools are still employed to speed up the simulation. Unfortunately, the
majority of them execute workflow at the penalty of accuracy loss and
inconsistent results between the simulation and the processor’s actual
behavior, which can lead to inferior simulation results. More critically,
even the widely used system-level processor simulators like Gem5 [3]
find it challenging to estimate and analyze the power consumption of
modern CPUs at architectural level. Third, Bayesian optimization(BO)
of processor DSE demands attempts of parallel acceleration in terms
of the effectiveness of new sample’s PPA collection in each loop.
Finally, a comprehensive automatic processor DSE framework is desired
for the ultimate objectives, PPA in the chip design flow. Overall,
due to the aforementioned drawbacks, more in-depth academic re-
search is encouraged to discover optimization approach on processor
microarchitecture.

To fulfill the aforementioned expectations, we present Score-Power-
Area efficient RISC-V processor Seeker, an automatic DSE framework to
processor microarchitecture based on Bayesian optimization(SPARK).
Our main contributions are highlighted below:

1. Algorithm Level: The RED algorithm is suggested to obtain represen-
tative designs and edge designs, which are then combined to create
the initial training set together. The convergence rate of Pareto front
is greatly accelerated by this method. The SPA-Gen infrastructure is
set up to gather measurements of mini-batched trials concurrently.
Our Para-BOED approach can effectively reduce the overall running
time while maintaining the same convergence target of Pareto front
as baseline.

2. Framework Level: We present an automatic multi-objective DSE
framework for processor microarchitecture. The BOOM processor
serves as the experimental object to validate the workflow. No-
tably, SPARK discovery an optimal microarchitecture design with
performance-cost ratio as evaluation criteria.

3. True commercial foundation: The experiment is built on the TSMC
28 nm CMOS process library, reliable CoreMark, and industry-
standard EDA tools. These foundation shows that SPARK is more
like a real-world application scenario.

The rest of this paper is organized as follows. Section 2 analyzes
OOM design space and its corresponding configurable parameters, re-
ines their optional values and discusses their constraints. In Section 3,
e model the combinatorial optimization problem and present in detail

he elements of SPARK framework, as well as the sampling advantages
f the proposed RED algorithm and the algorithmic flow of Para-BOED.
ection 4 provides an application of the SPARK framework to the DSE
2

roblem of BOOM and Section 5 draws a conclusion.
Table 1
Microarchitecture design parameters of BOOM.

Module Parameter Choices

FrontEnd

FetchWidth 4, 8
FetchBufferEntry 8, 16, 24, 32, 35, 40
RasEntry 16, 24, 32
BranchCount 8, 12, 16, 20
ICacheWay 2, 4, 8
ICacheTLB 8, 16, 32
ICacheFetchBytes 2, 4

Decode Unit

DecodeWidth 1, 2, 3, 4, 5
RobEntry 32, 64, 96, 128, 130
IntPhyRegister 48, 64, 80, 96, 112
FpPhyRegister 48, 64, 80, 96, 112

Issue Unit
MemIssueWidth 1, 2
IntIssueWidth 1, 2, 3, 4, 5
FpIssueWidth 1, 2

Load Store Unit

LDQEntry 8, 16, 24, 32
STQEntry 8, 16, 24, 32
DCacheWay 2, 4, 8
DCacheMSHR 2, 4, 8
DCacheTLB 8, 16, 32

Total 14bn

2. Constraints and pruning

The microarchitecture of BOOM processor is chosen as the subject
of study to evaluate the proposed SPARK framework in light of its
representativeness, developer-friendliness, and configurability in the
open-source hardware community. Front-end, decoder unit, issue unit,
and load-store unit compose the majority of BOOM core. We concen-
trate on the four modules listed in Table 1 and describe each of their
customizable parameters, which are in accordance with the choices
made in BOOM-Explorer(BE) [12]. That allows meaningful compar-
isons with previous work. The first column shows the main modules
of BOOM. In the second column, the parameters of each module are
described, while in the third column, the range of parameter values is
indicated. For example, the load queue (LDQ) has a minimum size of 8
entries and a maximum size of 32 entries varied in steps of 8, meaning
4 different designs. The last row gives the number of designs in design
space of BOOM.

The most popular BOOM configurations are the classic SmallBoom-
Config, MediumBoomConfig, LargeBoomConfig, and MegaBoomConfig,
which differ greatly in each design parameter and consequently in
each of their three performance metrics. Designers can choose from a
variety of combinations of each parameter to generate quite different
RTL. As a result, designers face a very large decision space since any
random combination of all the parameter selections will compose a
design space with 13,996,800,000 individuals. However, it is obvious
that not all configurations are valid and acceptable combinations when
taking into account the constraints between various parameters. In
this paper, these parameters are subject to the necessary limitations
in Table 2. The first 5 of them are general rules for processor design,
while next 6–8 constraints are the same setting as BE’s that we adhere
to in order to narrow the design space. The last one is included since
we noticed that the generated RTL fail to execute CoreMark program
in the scenario that was violated. Judging by past design conventions,
limiting IssueWidth to less or equal than DecodeWidth is reasonable for
pipeline execution of Out-of-Order processor. The size of design space
after constraint pruning to deconstruct is 35575200. There is no doubt
that the processor designer remains unconvinced this quantity can be

reached.

Microelectronics Journal 132 (2023) 105679Q. Li et al.
Fig. 1. SPARK framework.
Table 2
Parameter constraints.

Constraint Rule

1 FetchWidth ≥ DecodeWidth
2 FetchBufferEntry > FetchWidth
3 RobEntry|DecodeWidtha

4 FetchBufferEntry|DecodeWidtha

5 FetchWidth = 2 × ICacheFetchBytes
6 IntPhyRegister = FpPhyRegister
7 LDQEntry = STQEntry
8 MemIssueWidth = FpIssueWidth
9 DecodeWidth ≥ IntIssueWdith

aThe former should be divisible by the latter.

3. SPARK framework

In order to explore the designs with the highest performance-cost
ratio for these factors, we establish the SPARK framework shown
in Fig. 1. Three stages and one infrastructure constitute the multi-
objective optimization framework:

1. Design sampling stage: The parameters of BOOM processor are
modeled as feature vector to constitute a discrete design space.
Initial design samples with extensive characterization are obtained
by our proposed RED algorithm.

2. Model construction stage: To perform the fitting of the feature vector
space to the object space, the DKL-GP model is built. The addition
of edge designs to SPARK is advantageous since it largely simplify
Pareto front searching for proxy model.

3. Exploration phase: Acquisition function, EHVI is maximized for
querying a batch of new elite trials. Next, trigger parallel SPA-Gen
3

flow to fetch SPA metrics back BO Engine, which achieve faster
ADRS convergence and speed of optimal design searching.

4. SPA-Gen infrastructure: responsible for parallel implementation of
different design configuration of RTL generation, automatic com-
pletion of functional simulation, logic synthesis, netlist simulation,
power analysis and feed PPAs back algorithm.

3.1. Problem modeling

The entire design space is discrete, since the design variables’ option
are constrained to a specific range with discrete values. We define the
individual design variable as 𝑥𝑖, and the combination of parameters
satisfying the constraints can be characterized as the design feature
vector, defined as 𝒙 = {𝑥1, 𝑥2, 𝑥3,… , 𝑥N}. Therefore, different feature
vectors form the design space 𝑫.

Performance score, power consumption, and area cost are design
metrics that we take into account. CoreMark is a simple, yet sophisti-
cated benchmark that is designed specifically to test the functionality
of a processor core. Running CoreMark produces a single-number score,
allowing users to make quick comparisons between processors [15].
Therefore, cycle-accurate simulation of CoreMark for BOOM is com-
pleted to yield a score as performance measurement of the processor,
which is defined as 𝑠. The power consumption includes dynamic and
short-circuit power consumption that corresponding to the real toggling
of signals by netlist simulation and the static power consumption of
the T28 standard cell library respectively, defined as 𝑝. The area cost
is the area overhead obtained from logic synthesis, defined as 𝑎. Thus,
the indicators of three metrics constitute a response vector, defined as
𝒚 = {𝑠, 𝑝, 𝑎}. Our design space exploration problem can therefore be
concluded to explore a set of configuration of parameters 𝑿Pareto with
optimal performance metrics 𝒀 Pareto within design space 𝑫.

𝒀 Pareto = ParetoFrontier(Response(𝑫)) (1)

Microelectronics Journal 132 (2023) 105679Q. Li et al.

c
s
i
t
b
t
b

o
g
t
t
c
d
c
n
i
c
d
c
O
o
c
p
r
i
T
c
t
u
t

Fig. 2. Clusters, representative design and edge design.

The final step after finding Pareto front of design space is to choose
a design from the Pareto front where the performance-cost ratio is
appropriate for the anticipated criteria. The performance score divided
by the product of power consumption and area cost is specified as
SPAR (Score-Power-Area Ratio) judgment rule in this work. This rule
indicates the performance score that a processor can exhibit on per-
unit wafer area and per-unit power consumption. Here, We only apply
this rule to assess design metrics of non-dominant designs in the end
of workflow, but not employ it as single objective for optimization
algorithm.

SPAR = 𝑠
𝑝 × 𝑎

(2)

The procedure of finding the optimal SPAR microarchitecture design
is calculated as follows:

𝒚opt = argmax𝒚 ∈𝒀 Pareto
SPAR (𝒚) (3)

3.2. RED algorithm

As design space normally contains a great number of possible com-
binations of design configuration, the selection of initial samples often
follows two goals. First, the number of initial samples must be as
small as practicable because of long time consumed for gathering
performance metrics of initial samples. Secondly, the target space
exhibits a nonlinear and multi-peak distribution to the feature space
as a result of high-order effects and crossover effects of feature vari-
ables. Thus, not only representative designs should be sampled, but
also best-performance and worst-performance designs with uniqueness
should be included into initial samples to embrace both generality and
distinctiveness.

For the consideration of generality, among all the processor’s design
factors, a few significant design variables have a major impact on per-
formance. DecodeWidth is an indicator of how many instructions can be
decoded in a given amount of time. The Decode Unit breaks down the
format of instructions, extracts their information, and then processes
these data to direct execution of the pipeline. Therefore, it is at the
throat of pipeline and requires special consideration. For considering
distinctiveness, extreme configurations of design parameters, which
tend to achieve best or worst performance can benefit proxy model to
reach more rich features to recognize the boundary of design space.
We believe the convergence speed of optimization algorithm will take
advantage of this consideration.

In this paper, we present RED algorithm to sample the initial designs
from design space in order to satisfy both two requirements.
4

e

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 𝐑𝐄𝐃(𝑷 ,𝑫,K)
𝐈𝐧𝐩𝐮𝐭 ∶ Parameter Choices 𝑷 ,Cluster number K,

Design Space 𝑫,Distance Weight 𝒘𝑟, 𝒘𝑒
𝐎𝐮𝐭𝐩𝐮𝐭 ∶ Initial Samples
𝟏 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 = K-Means

(

𝑫,K,𝒘𝑟
)

;
𝟐 𝒂max = MaxComb(𝑷), 𝒂min = MinComb(𝑷);
𝟑 𝐟𝐨𝐫 𝑪 𝑖 in 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝐝𝐨
𝟒 𝑿r = 𝑿r ∪ TED(𝑪 𝑖); ∀ 𝑖 ∈ {1, 2,⋯ ,K}
𝟓 𝐄𝐧𝐝 𝐟𝐨𝐫
𝟔 𝐟𝐨𝐫 𝑪 in {𝑪1, 𝑪K} 𝐝𝐨
𝟕 𝒙e_max = argmin𝒙∈𝑪Distance(𝒙,𝒂max,𝒘e);

𝒙e_min = argmin𝒙∈𝑪Distance(𝒙,𝒂min,𝒘e);
𝟖 𝐄𝐧𝐝 𝐟𝐨𝐫
𝟗 𝑿initial = 𝑿r ∪ 𝒙e_max ∪ 𝒙e_min;
𝟏𝟎 𝐑𝐞𝐭𝐮𝐫𝐧 𝑿initial

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝐁𝐎𝐄𝐃(𝑷 ,𝑫,K,R)
𝐈𝐧𝐩𝐮𝐭 ∶ Parameter Choices 𝑷 ,Design Space 𝑫,

Cluster number K,Round number R
𝐎𝐮𝐭𝐩𝐮𝐭 ∶ Optimal SPAR design
𝟏 𝑿 = RED (𝑷 ,𝑫,K) ;
𝟐 𝒀 = SPA−Gen(𝑿);
𝟑 𝐟𝐨𝐫 𝑖 ← 0 to R 𝐝𝐨
𝟒 Train DKL−GP model on (𝑿, 𝒀)
𝟓 𝑿new = argmax𝒙∈𝑫EHVI(𝒙);
𝟔 𝒀 new = SPA−Gen(𝑿new);
𝟕 𝑿 = 𝑿 ∪𝑿new, 𝒀 = 𝒀 ∪ 𝒀 new;
𝟖 Construct Pareto Frontier𝑿Pareto, 𝒀 Pareto f rom 𝒀 ;
𝟗 𝐟𝐨𝐫 𝒚 in 𝒀 Pareto 𝐝𝐨
𝟏𝟎 if SPAR(𝒚) ≥ SPAR(𝒚𝑀𝐵𝐶)
𝟏𝟏 𝑶𝒑𝒕 = 𝑶𝒑𝒕 ∪ (𝒙, 𝒚);
𝟏𝟐 𝐄𝐧𝐝 𝐟𝐨𝐫
𝟏𝟑 𝐑𝐞𝐭𝐮𝐫𝐧 𝑿Pareto, 𝒀 Pareto,𝑶𝒑𝒕

Representative designs selection: Acquired from BE, we adapt the
onventional K-means method to group design feature vectors into five
eparate design clusters, taking DecodeWidth as the primary distance
nfluence factor. Then apply the TED algorithm [16] within each cluster
o identify the most representative feature vectors. For example, The
lue and cyan balls in Fig. 2 show the distribution of the designs in
he target space for DecodeWidth of 2 and 4, respectively. The five red
alls are the representative designs obtained by RED.

Edge designs selection: The RED algorithm computes a combination
f the maximum/minimum choice of design parameters to create two
enuine extreme designs, which we name as anchor designs. According
o perception of prior knowledge, the maximum anchor design tends
o have the highest performance score, power consumption, and area
ost after being mapped to target space, whereas the minimum anchor
esign is the reverse. Hence, among the K clusters formed from prior
lustering, two clusters with DecodeWidth of 1 and 5 respectively are
aturally chosen. The design nearest to the anchor inside each cluster
s determined by distance calculation with respect to the maximum an-
hor and minimum anchor. When choosing an edge design, we consider
istance evaluation in greater detail. The implications of each pipeline
omponent on design metrics differ for superscalar processors. The
ut-of-Order processor has most significant trait on disorder execution
f instructions. The last commit stage, where ROB is in charge of
ommitting and retiring instructions, is typically incorporated into the
ipeline in order to maintain the validity of the program execution
esult. Additionally, hardware resources for data store are provided by
nteger/floating-point physical registers for execution of instructions.
he parameters of these components receive larger weights in distance
omputation based on the superscalar Out-of-Order processor’s fea-
ures. Therefore, RED algorithm will extract edge designs from cluster
sing predefined distance weight. Here, the term ‘‘edge design’’ refers
o such extreme design. Obviously, this consideration additionally cov-
rs the unique designs of the vast design space. In the end, initial

Microelectronics Journal 132 (2023) 105679Q. Li et al.
Fig. 3. Pareto front in objective space and hypervolumn surrounded by reference point
and Pareto front.

training samples of proxy model are made up of edge designs and
representative designs from clusters. The brown ball in Fig. 2 represents
the maximum and minimum edge design obtained by RED.

3.3. Para-BOED algorithm

with generated initial sample set, Bayesian optimization algorithm
with edge designs(BOED) is proposed. Due to the optimal-seeking
effectiveness of the DKL-GP model presented in BE, BOED follow this
proxy model. However, it should be highlighted that we generalize the
model to the triple objective search issue in our problem.

Following training and converged, the model would be used to
predict the mean and variance of three design metrics in object space,
which determine the average level of performance prediction and
its uncertainty. Each performance variable distribution is recognized
as normal distribution. In order to efficiently solve the problem of
multi-objective optimization, the acquisition function, Expected Hyper-
Volumn Improvement(EHVI) is employed to compute for each sample.
After setting a reference point that is slightly inferior to the poorest
design metrics, the Pareto front and reference point surround three-
dimensional hypervolume of the target space. The Pareto front in target
space can be obtained by maximizing EHVI values of all samples. As
shown in Fig. 3, the blue points are non-dominant designs in objective
space, which compose Pareto front and surround a hypervolumn with
reference point. The hypervolume is obtained by subtracting the vol-
ume of the green blocks from the orange block. For fast prototyping, we
utilize relevant EHVI function in Botorch [17] to calculate the expected
improvement for each sample and rank all candidates. Therefore, the
multi-objective optimization problem can be concluded by consistently
selecting the design that can dominate the old Pareto front to the
maximum extent. To obtain their respective real SPA metrics, generated
new trails need to query the SPA-Gen flow.

We sort the new design candidates obtained by maximizing the
acquisition function in order to obtain a series of new trials from the
highest rank to the lowest by the algorithm control, which are referred
to as elite trials under the current iteration. This method was inspired
by the elite-preserving strategy in the NSGA-II algorithm [18]. The
parallel SPA-Gen Flow is designed and implemented to support parallel
performance simulation process of elite trials, which can concurrently
gather SPA of trials and significantly shorten overall running time
of BOED algorithm. Hence, This mutually supportive set of method
and tool increases the speed of algorithm convergence and optimal
searching. BOED with parallelism assistance is what we refer to as
Para-BOED here.

The original training data and elite trail data are joined after re-
trieving SPA metrics, and the proxy model is then refitted. Next, BOED
predict the learned Pareto front once for each loop and compare it with
the real Pareto to generate ADRS. When determining whether a design
is superior to the official Two-Wide BOOM, SPAR metric mentioned be-
fore is adopted. BOED algorithm returns the optimal microarchitecture
design with the highest SPAR after exiting the Bayesian optimization
loop.
5

4. Experiment

4.1. SPA-Gen infrastructure

SPA-Gen infrastructure play the strength of Chipyard [19] platform
resided by BOOM, to generate RTL for different BOOM configurations
using its automatic processor-generated flow and configurable support
features. The offline dataset samples used in our experiments are
obtained by uniform random sampling in the design space. The 1032
designs in this dataset are the basis for our experiments. SPA evaluation
process for samples and trials is roughly as follows:

1. Generate RTL: different BOOM parameters are automatically gener-
ated into Scala files and then compiled to RTL hardware description.

2. Performance simulation: In order to determine the processor’s per-
formance score in terms of MHz units, we evaluate CoreMark pro-
gram on the BOOM SoC running on a bare-metal environment
(without OS) using Verilator 4.225.

3. Logic synthesis and power consumption simulation: All created
BOOM instances with design frequencies of 1.5 GHz are submitted
to logic synthesis with front-end libraries of the TSMC 28 nm CMOS
process in order to be as realistic as possible to real application
scenarios in academia and industry. The RTL design’s high-capacity
register banks are substituted by SRAM macros using MacroCom-
piler prior to synthesis. In order to automate the power and area
collection for each design, SPA-Gen also integrates the plugins of
Synopsys Design Compiler Q-2019.12-SP5 for logic synthesis and
PrimeTime O-2018.06-SP5 for power simulation to the Hammer
flow [20]. Next, gate-level netlist simulation of the designs is carried
out to extract the signal-toggling waveform, and PrimTimePX is used
to analyze power consumption.

Performance score, power consumption, and area cost of a single
BOOM design instance can be obtained with the help of the afore-
mentioned three processes. The experiment time required to carry
out the aforementioned procedures in order for a single design is
quite expensive, lasting roughly 8 to 12 h. Obviously, continuing
with sequential flow is quite time intensive for dataset preparation
and algorithm iteration. In order to achieve a completely automatic
parallel SPA throughput flow, SPA-Gen flow specifically considers the
parallelizability between phases of EDA flow of single and different
designs, which is supported by the resources capabilities of the EDA
service cluster. In particular, SPA-Gen flow is advantageous for the elite
trial obtained during sampling phase in BOED, and SPAs can be queried
back in parallel to mask overall running time.

4.2. BOED efficiency

The Pareto front is obtained by non-dominated ordering of de-
signs in the target space. Distance between learned Pareto front and
real Pareto front is normally called ADRS, which means average dis-
tance from reference set. 𝜸 and 𝝎 are designs on the real Pareto and
learned Pareto front respectively, and here Dist is calculated using the
Euclidean distance:

ADRS(𝜞 ,𝜴) = 1
|𝜞 |

∑

𝜸∈𝜞
min𝝎∈𝜴Dist(𝜸,𝝎) (4)

The effectiveness of learned Pareto designs is reflected by the ADRS
indicator. The learned Pareto front more closely near the real Pareto
front, the more it fulfills the expectations of the designer. In addition
to ADRS, DSE problems typically take overall running time(ORT) into
account, which illustrates the searching speed for optimal design could
be conducted. Experiment baseline conditions are identical to those
reported in respective papers [11] for fair comparisons. To calculate
the mean, we performed the experiment ten times in order to rule out
chance.

Microelectronics Journal 132 (2023) 105679Q. Li et al.
Fig. 4. ADRS convergence of baseline, seq-BOED, para2-BOED and para3-BOED.

4.2.1. seq-BOED efficiency
We contrast the sequential-BOED(seq-BOED) with the baseline to

show the BOED algorithm’s efficacy. Here, the triple objective prob-
lem’s baseline results are produced by implementing algorithms in
BE.

The convergence of ADRS metric for baseline and seq-BOED as
optimization iteration runs is shown by green line and red line in Fig. 4.
Results indicate that baseline starts to converge after 95 rounds. Using
ADRS value attained by baseline at the 100th round as criteria, seq-
BOED algorithm achieves a similar amount of ADRS convergence as
baseline at the 32nd round. As the designer is more concerned with
the number of queries in DSE issue, we set timing cost for each new
sample to obtain their SPA metric from SPA-Gen flow as 8 h, which is
an objective and understandable value. Thus, the overall running time
for 100 rounds of baseline is 800 h, whereas the overall running time
for 32 rounds of seq-BOED is just 256 h, which achieve a reduction of
2.125. Additionally, with 32 iterations as same time budget, compared
to the ADRS number of BOED, the ADRS number of baseline is 7.85.
Therefore, improved observations on convergence of ADRS show that
seq-BOED finds Pareto front solutions with better quality than Baseline
for the same number of rounds. Seq-BOED, from another perspective,
runs less than one-third of the total searching time of baseline while
achieving similar ADRS convergence targets.

4.2.2. Parallelism sensitivity
To verify the effectiveness of parallel strategy in Para-BOED and

its parallelism sensitivity, we set the parallelism parameter to 2 and
3, repeated 10 times, and take the average value. We name these two
experiments as para2-BOED and para3-BOED. For the consideration
of redundancy of elite trials and algorithm running time, we do not
increase Parallelism further. The convergence of ADRS for seq-BOED,
parallel2-BOED, and parallel3-BOED, respectively, is shown in Fig. 4 by
the red, brown, and yellow curves. Results reveal that the technique of
running multiple elite trials simultaneously against the VLSI flow can
significantly increase search speed. While Para3-BOED only requires 14
shots to complete the identical ADRS target, Para2-BOED requires 19
rounds. The ORT is reduced into 0.14 and 0.19 times as fast as baseline,
based on the mask of SPA delivery time for new trials using SPA-Gen
flow. Respectively, the total running time is 112 h and 152 h. In light
of this, Para3-BOED can identify the suitable Pareto front in less time
than 5 days.
6

Table 3
Comparison between official Two-Wide BOOM and optimal SPAR BOOM from SPARK.

Paramter Official TWB SPARK

FetchWidth 4 4
FetchBufferEntry 16 40
RasEntry 32 16
BranchCount 12 12
ICacheWay 4 2
ICacheTLB 8 32
ICacheFetchBytes 2 2
DecodeWidth 2 2
RobEntry 64 64
IntPhyRegister 80 96
FpPhyRegister 64 96
MemIssueWidth 1 1
IntIssueWidth 2 2
FpIssueWidth 1 1
LDQEntry 16 24
STQEntry 16 24
DCacheWay 4 2
DCacheMSHR 2 2
DCacheTLB 8 8

Score (CoreMark/MHz) 3.839785 3.89595
Power (mW) 0.088313 0.091531
Area (mm2) 2.047098 1.996553

SPAR 21.23954 21.318877

Table 4
Query times of baseline and our approaches for SPAR optimal search.

Method Official TWB SPAR optimal

baseline 2 37
seq-BOED 1 17
para2-BOED 1 7
para3-BOED 1 6

4.3. Pareto front

Fig. 5 displays the learned Pareto front for seq-BOED, para2-BOED,
para3-BOED and baseline respectively. In contrast to subplot (a), which
depicts a metrics view in three dimensions, subplots (b)–(d) present
arbitrary two of three metrics as a 2D plan view. From the standpoint
of designers, the Pareto front obtained by SPARK has a reliable range of
distribution, allowing the designer to select in accordance with certain
design requirements.

4.4. Optimal SPAR design

The parameters of the optimal SPAR design, as determined by Para-
BOED, are displayed in Table 3. It is obvious that our design’s SPAR
metric is higher than official Two-Wide BOOM’s. Our optimal design
outperforms than the Official one in terms of performance score and
area overhead, but it uses a little more energy. Both of them are two-
width processors, and their structural parameters – such as issue queue
parameters, ROB size, branch count, DCache MSHR, and DCache TLB
size – are essentially the same. And subtly different on smaller but
crucial elements, like the number of physical registers and the size
of the load-store queue. We compare the least Query times acquiring
optimal SPAR design from ten experiments of different approaches in
Table 4

It is worth noting that reaching the SPAR optimal point by our
SPARK framework takes only 6 queries, which represents spending
only a few days to obtain the optimal design of BOOM processor.
However, manually designing the official Two-Wide BOOM might need
several weeks or even longer. The optimization methodology of SPARK
framework clearly demonstrates its efficacy and great speed advantage.

Microelectronics Journal 132 (2023) 105679Q. Li et al.
Fig. 5. Pareto front obtained by baseline, seq-BOED, para2-BOED and para3-BOED.
5. Conclusion

In this article, we propose a framework for automatic multi-
objective processor microarchitecture seeking. Pareto front search is
remarkably accelerated by the addition of edge designs, and overall
running time of BOED algorithm is significantly reduced based on
the recommended SPA-Gen flow. According to experimental findings,
SPARK is capable to discover an optimal processor microarchitecture on
SPAR criteria within reasonable time budget. Our upcoming research
on design space exploration will concentrate on creating more effective
sampling techniques and proxy models in order to condense the design
space and potentially undertake the task of global optimization. We
anticipate that the community of processor design and optimization
will consider SPARK to be instructive.

CRediT authorship contribution statement

Qiang Li: Conceptualization, Methodology, Software, Hardware
design, Data analysis, Writing – original draft. Jun Tao: Supervi-
sion, Technical guidance. Jun Han: Funding acquisition, Supervision,
Project management, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
7

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China under Grant 61934002.

References

[1] K. Asanovic, D.A. Patterson, C. Celio, The berkeley out-of-order machine (boom):
An industry-competitive, synthesizable, parameterized risc-v processor, Technical
Report, University of California at Berkeley Berkeley United States, 2015.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J.
Wawrzynek, K. Asanović, Chisel: constructing hardware in a scala embed-
ded language, in: DAC Design Automation Conference 2012, IEEE, 2012, pp.
1212–1221.

[3] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D.R. Hower, T. Krishna, S. Sardashti, et al., The gem5 simulator, ACM SIGARCH
Comput. Archit. News 39 (2) (2011) 1–7.

[4] A. Patel, F. Afram, K. Ghose, Marss-x86: A qemu-based micro-architectural and
systems simulator for x86 multicore processors, in: 1st International Qemu Users’
Forum, Citeseer, 2011, pp. 29–30.

[5] T.E. Carlson, W. Heirman, L. Eeckhout, Sniper: Exploring the level of abstraction
for scalable and accurate parallel multi-core simulation, in: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2011, pp. 1–12.

[6] D. Sanchez, C. Kozyrakis, Zsim: Fast and accurate microarchitectural simulation
of thousand-core systems, ACM SIGARCH Comput. Archit. News 41 (3) (2013)
475–486.

http://refhub.elsevier.com/S0026-2692(22)00308-1/sb1
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb1
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb1
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb1
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb1
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb2
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb3
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb3
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb3
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb3
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb3
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb4
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb4
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb4
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb4
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb4
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb5
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb6
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb6
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb6
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb6
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb6

Microelectronics Journal 132 (2023) 105679Q. Li et al.
[7] S. Salamin, M. Rapp, A. Pathania, A. Maity, J. Henkel, T. Mitra, H. Amrouch,
Power-efficient heterogeneous many-core design with NCFET technology, IEEE
Trans. Comput. 70 (9) (2021) 1484–1497.

[8] E. Ïpek, S.A. McKee, R. Caruana, B.R. de Supinski, M. Schulz, Efficiently exploring
architectural design spaces via predictive modeling, Oper. Syst. Rev. 40 (5)
(2006) 195–206.

[9] C. Dubach, T.M. Jones, M.F. O’Boyle, An empirical architecture-centric approach
to microarchitectural design space exploration, IEEE Trans. Comput. 60 (10)
(2011) 1445–1458.

[10] B.C. Lee, D.M. Brooks, Illustrative design space studies with microarchitec-
tural regression models, in: 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, IEEE, 2007, pp. 340–351.

[11] D. Li, S. Yao, Y.-H. Liu, S. Wang, X.-H. Sun, Efficient design space exploration
via statistical sampling and AdaBoost learning, in: 2016 53nd ACM/EDAC/IEEE
Design Automation Conference, DAC, IEEE, 2016, pp. 1–6.

[12] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, M.D. Wong, BOOM-explorer: RISC-v BOOM
microarchitecture design space exploration framework, in: 2021 IEEE/ACM
International Conference on Computer Aided Design, ICCAD, IEEE, 2021, pp.
1–9.

[13] M. Moudgill, P. Bose, J.H. Moreno, Validation of turandot, a fast processor model
for microarchitecture exploration, in: 1999 IEEE International Performance,
Computing and Communications Conference (Cat. No. 99CH36305), IEEE, 1999,
pp. 451–457.
8

[14] D. Brooks, P. Bose, V. Srinivasan, M.K. Gschwind, P.G. Emma, M.G. Rosenfield,
New methodology for early-stage, microarchitecture-level power-performance
analysis of microprocessors, IBM J. Res. Dev. 47 (5.6) (2003) 653–670.

[15] CoreMark, 2022, URL https://www.eembc.org/coremark/, (accessed 6 December
2022).

[16] K. Yu, J. Bi, V. Tresp, Active learning via transductive experimental design, in:
Proceedings of the 23rd International Conference on Machine Learning, 2006,
pp. 1081–1088.

[17] M. Balandat, B. Karrer, D.R. Jiang, S. Daulton, B. Letham, A.G. Wilson, E.
Bakshy, BoTorch: A framework for efficient Monte-Carlo Bayesian optimization,
in: Advances in Neural Information Processing Systems 33, 2020, URL http:
//arxiv.org/abs/1910.06403.

[18] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[19] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar,
H. Mao, A. Ou, N. Pemberton, et al., Chipyard: Integrated design, simulation, and
implementation framework for custom socs, IEEE Micro 40 (4) (2020) 10–21.

[20] H. Liew, D. Grubb, J. Wright, C. Schmidt, N. Krzysztofowicz, A. Izraelevitz,
E. Wang, K. Asanović, J. Bachrach, B. Nikolić, Hammer: a modular and
reusable physical design flow tool, in: Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 1335–1338.

http://refhub.elsevier.com/S0026-2692(22)00308-1/sb7
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb7
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb7
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb7
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb7
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb8
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb8
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb8
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb8
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb8
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb9
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb9
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb9
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb9
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb9
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb10
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb10
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb10
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb10
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb10
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb11
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb11
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb11
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb11
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb11
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb12
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb13
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb14
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb14
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb14
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb14
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb14
https://www.eembc.org/coremark/
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb16
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb16
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb16
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb16
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb16
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb18
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb18
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb18
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb19
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb19
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb19
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb19
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb19
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20
http://refhub.elsevier.com/S0026-2692(22)00308-1/sb20

	SPARK: An automatic Score-Power-Area efficient RISC-V processor microarchitecture SeeKer
	Introduction
	Constraints and Pruning
	SPARK framework
	Problem Modeling
	RED Algorithm
	Para-BOED Algorithm

	Experiment
	SPA-Gen Infrastructure
	BOED efficiency
	seq-BOED efficiency
	Parallelism sensitivity

	Pareto front
	Optimal SPAR design

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

