
LockillerTM: Enhancing Performance Lower
Bounds in Best-Effort Hardware Transactional

Memory

Li Wan, Fu Chao, Qiang Li, Jun Han∗
State Key Laboratory of Integrated Chips and Systems, Fudan University

Shanghai, China

Abstract—Concurrent access to shared data has always been
a challenge for developing multi-threaded programs and a
bottleneck in the performance of Chip-Multiprocessor (CMP)
systems. The challenge has been exacerbated by the need to
augment processor cores and network bandwidth to fulfill the
low-latency demands of ever-expanding data processing. Existing
commercial best-effort Hardware Transactional Memory (HTM)
is a common and effective solution. However, its architectural
constraints prevent transactions from surviving in exceptions,
cache overflow, and coexisting with a non-speculation fallback
path, leading to unstable performance and diminishing favor. In
this paper, we propose three lightweight mechanisms designed to
mitigate the limitations of the best-effort HTM architecture to
enhance performance stability. One is the recovery mechanism
that supports the dynamic revocation of toxic conflicting requests,
dramatically reducing the potential of livelocks. The second
is the HTMLock mechanism with hardware and software co-
design, which allows transactions using HTM and locks to run
concurrently except when encountering actual conflict. Lastly,
the switchingMode mechanism enables a running transaction to
proactively attempt to switch to HTMLock mode in the event of
a non-conflict-induced abort. Gem5 infrastructure is extended to
validate and evaluate our mechanisms in a 32-core tiled CMP
system. Experimental studies show that LockillerTM outperforms
the coarse-grained locking scheme under STAMP benchmarks
except for the yada workload, irrespective of thread number and
cache size. Furthermore, our approach achieves an average of
1.86x and 1.57x speedup in all benchmarks and different threads
under a typical cache size and a maximum of 7.79x and 6.73x
speedup in high-contention benchmarks under extreme scenarios
with only 8KB L1 cache and 32 threads, compared to best-effort
HTM and state-of-the-art HTM respectively.

Index Terms—Concurrent control, hardware transactional
memory, coherence protocol

I. INTRODUCTION AND MOTIVATIONS

Transactional memory is a general and efficient concur-

rency synchronization architecture that works against any data

structure and is lock-free [1]. It can be implemented by a

software called STM. However, it will introduce relatively

high performance overhead [2], or it can be implemented

by hardware called HTM, which can obtain relatively high

performance at the cost of increasing hardware complexity. A

wide range of researchers have favored HTM for a long time

due to its potential to achieve performance comparable to the

The authors are with the State Key Laboratory of Integrated
Chips and Systems, Fudan University, Shanghai 201203, China. E-mail:
wanl21@m.fudan.edu.cn, {cfu19, qiangli19, junhan}@fudan.edu.cn

Fig. 1. The speedup of requester-win best-effort HTM with re-

spect to coarse-grained locking scheme under STAMP bench-

marks using two threads.

lock-free scheme while providing the advantages of coarse-

grained locking in terms of generality and ease of use [3].

Despite endless academic exploration of HTM performance,

hardware vendors eventually adopted the implementation of

eager HTM with the most straightforward requester-win con-

flict management strategy to compromise on the complexity

of implementation and the difficulty of validation. Moreover,

hardware vendors have introduced specific architectural con-

straints to the HTM implementation, resulting in unconditional

transaction aborts when exceptions and cache overflow occur.

A non-speculative fallback path is required to ensure that the

transaction proceeds as it is also known as best-effort HTM

[5]–[7]. As a result, best-effort HTM often exhibits unstable

performance and even performs worse than using coarse-

grained locking when running transactional workloads with

high contention, relatively large read/write sets, and is prone

865

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00081

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d 

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

87
11

-7
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IP

D
PS

57
95

5.
20

24
.0

00
81

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



to exceptions, as shown in Fig. 1. This results in gradually

diminishing the favor for HTM.
We would like to know if we could make relatively

lightweight incremental modifications that guarantee that
best-effort HTM outperforms coarse-grained locking in
most common scenarios. By observation, we find that the

main problem where best-effort HTM performs worse than

locking is friendly-fire, a known problem where a transaction

is defeated by a transaction it has defeated. The two transac-

tions do not advance over time, and as a result, they both end

up starting to use locks. Instead of pessimistically predicting

which requests will cause conflicts again, we propose a re-

covery mechanism that optimistically assumes that all requests

will not cause conflicts and withdraw requests only when they

cause conflicts and the originators of the request have a lower

user-defined priority.
To ensure a minimum level of system performance more

than relying solely on the recovery mechanism is required

because, besides memory conflicts, various events like acquir-

ing the fallback lock, exceptions, and cache overflow can also

trigger transaction aborts. Such aborts may unexpectedly lead

to a ”black swan event,” where a transaction that has been

relied upon ends up aborting for unforeseen or unforeseeable

reasons. Firstly, to address the problem of the fallback path

unconditionally terminating all running transactions, even if

there is no conflict between them, we propose the HTMLock

mechanism to allow the fallback path and transactions to se-

curely run together by modifying the HTM programming inter-

face and enhancing cache coherence protocol and bookkeeping

mechanisms. Secondly, to tackle the issue of the remaining

unconditional transaction aborts caused by exceptions and

cache overflow, we introduce the switchingMode mechanism

built upon the HTMLock mechanism. This mechanism enables

a transaction to proactively attempt a transition to HTMLock

mode before triggering an abort and can avoid the rollback of

transactions if successful.
To summarize, we have made the following contributions:

1) We introduce a lightweight recovery mechanism that

upholds the Single Writer Multiple Readers (SWMR)

property of cache coherence, empowering users to

employ more effective conflict management strategies.

When combined with the committed instructions-based

(insts-based) policy outlined in the paper, this approach

significantly reduces the occurrence of friendly fire by

selectively revoking harmful conflict requests, enhancing

system stability and performance in typical scenarios.

2) We propose an innovative HTMLock mechanism metic-

ulously engineered in hardware and software layers, ef-

fectively dissolving the conservative exclusivity between

fallback paths reliant on a fallback lock and HTM-

based transactions. This approach facilitates concurrent

execution of HTM-based and lock-based transactions

unless there is a conflict, greatly enhancing system

parallelism, particularly in scenarios with many threads.

3) To alleviate the architectural constraints found in best-

effort HTM, which typically does not support transac-

tions enduring exceptions and cache overflow events,

we adopted a non-invasive approach named switching-

Mode. This method involves a subtle enhancement to the

HTMLock mechanism, allowing transactions to switch

to HTMLock mode proactively when faced with such

situations and avoid transaction wasted work in case of

no other thread in HTMLock mode.

4) LockillerTM performs better than the coarse-grained

locking scheme regardless of thread count and cache size

under the STAMP benchmarks suite, except for the yada

workload on a 32-core tiled CMP system with gem5.

Furthermore, on average, it obtains a 1.86x and 1.57x

speedup over requester-win best-effort HTM and state-

of-the-art HTM under a typical cache size.

II. RELATED WORK

It has been 30 years since Herlihy first proposed an HTM

blueprint in 1993 [1]. Due to the potential significance of HTM

in concurrency control, researchers have optimized HTM from

various dimensions during this period.

Early HTM researchers utilized memory-resident data to

save and restore transaction-related information to achieve un-

bounded HTM [8], [9], which significantly broadened its range

of uses. Since then, more research has focused on improving

the performance of HTM [4], [32], broadly categorized into

two main types: reducing the occurrence of conflicts and

reducing the cost of transaction rollback. Lazy HTM, such

as TCC [11], can avoid RAW conflicts by delaying conflict

detection until the commit phase of a transaction. However,

the drawbacks of lazy HTM are also apparent, leading to more

wasted transactional workload and the need for serialization of

transaction commits. EazyHTM [12] and FlexTM [13] provide

distributed commits by recording conflicts as they happen.

DynTM [14] supports the simultaneous execution of eager

and lazy transactions through an extended cache coherence

protocol. ForgiveTM [15] and DeTras [16] achieve a similar

effect to lazy HTM in the eager system by delaying the

write request, which is not observed externally. From the

point of view of weakening the semantics of transactional

memory, DATM [17], SONTM [18], and Wait-n-GoTM [19]

eliminate some unnecessary conflicts by logging the depen-

dencies between transactions so that conflicts only need to

be resolved if there is a cyclic dependency. Furthermore, SI-

TM [20] and OverlayTM [21] eliminate read-write conflicts

by providing a consistent view of transaction data through

a multi-version memory system. From the perspective of

conflict arbitration, PleaseTM [22] and LosaTM [23] consider

the characteristics of the transaction and current execution

information when encountering a conflict, improving system

performance by making more reasonable arbitration decisions.

Through dynamic scheduling of transactions, ATS [24], PTS

[25], BFGTS [26], and SEER [27] monitor conflict events in

the system, predict the confidence level of conflict, and then

prevent recurrence of conflict. Furthermore, some works aim to

reduce the cost of transaction rollback by adding checkpoints

before potentially conflicting requests [28], repairing conflict-

866

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



ing data by RETCON [29], and prefetching data invalidated

by a transaction after it aborts [30].

Although academics have proposed a variety of schemes

to improve HTM performance as described above, hardware

vendors, for the sake of strong transactional semantics and

minimal changes to the architecture at the expense of some

performance, have unanimously adopted eager HTM, known

as best-effort HTM where there is no guarantee that a transac-

tion will move forward. There needs to be a non-speculative

fallback mechanism [5]–[7].

The most relevant works for our recovery mechanism are

LogTM [10] and LosaTM [23]. LogTM uses NACK solely

to indicate to the requester that a conflict has occurred and

adopts the conflict resolution policy of retrying after a period.

Although unnecessary rollbacks can be reduced, retry timing

is difficult to determine and introduces the possibility of dead-

locks. LosaTM solves the problem of difficulty in determining

the retry time through the wake-up mechanism. However, its

arbitration logic is so complex that the cache controller needs

an extra cycle of delay in exceptional cases, and introducing

a retry arbitration option will also introduce deadlock risk.

Unlike the above two works, this paper only draws on the

NACK method to help establish a global transaction priority

from the perspective of stable performance. It only requires

guarantees that at least one core of the system can survive so

that the design can be relatively simple. Moreover, the papers

need to discuss the details of the implementation of NACK

and its impact on legacy systems, which will affect whether

vendors consider supporting them in the future.

Concurrent Irrevocable Transaction (CIT) [31] is the closest

work to our HTMLock mechanism. It implements the simul-

taneous execution of transactions with HTM and irrevocable

transactions with lock by not acquiring the fallback lock

when it enters a non-speculation fallback path. The translated

lock address must, however, be stored in the MMU. Cache

controllers block conflict requests, write to the translated lock

address, and abort ongoing transactions using HTM when

they encounter conflict requests during CIT mode. The most

significant difference between our work and CIT is that, to

the best of our knowledge, we implement the first complete

parallel execution of transactions using HTM and transactions

based on a fallback lock because transactions using HTM do

not need to subscribe to the lock address before proceeding.

It is important to note that the execution of a transaction

with a lock will only abort the transactions using HTM that

conflict with it and will not abort all transactions using HTM,

thus increasing the parallelism of the system. Additionally, to

stabilize the performance of best-effort HTM, we propose a

switchingMode mechanism. Since there is no need to record

the lock’s address in the MMU, a transaction attempts to

proactively switch to HTMLock mode when encountering

abort events due to system limitations; thereby, there is a

certain probability of avoiding the currently wasted work,

which the CIT does not support.

III. LOCKILLERTM

In this section, we discuss the three proposed mechanisms

to enhance its stability by easing architectural constraints step

by step.

A. Recovery Mechanism

The recovery mechanism proposed in this paper is an

incremental modification based on best-effort HTM to achieve

more stable performance with as few changes as possible to

the original cache coherence protocol. The high-level idea

of the recovery mechanism is that, for requests issued by a

user-defined low-priority transaction conflicting with a user-

defined high-priority transaction, the recovery mechanism is

responsible for withdrawing them. Theoretically, at least one of

the highest-priority transactions can be successfully committed

to achieve performance at least as good as coarse-grained

locking.

Fig. 2. The overall architecture of the recovery mechanism.

The architecture of the recovery mechanism, shown in Fig.

2, provides a framework for undoing messages sent from the

cache to the interconnect, with no stipulation on the priority

between transactions, nor on the action after a request has been

withdrawn, which means that it can be implemented relatively

easily. It is worth noting that the recovery mechanism will still

function even if it chooses to abort the transaction that triggers

a conflict request.

Consider a scenario where a transaction initiates a read

request to the interconnect, and the interconnect forwards

the request to the cache controller that owns the block. The

cache controller is in the HTM transaction state, and the

metadata indicates that the current transaction has written the

block. Following the requester-win conflict resolution policy,

the transaction should be aborted, but the transaction’s written

data cannot be accessible outside the transaction. Therefore,

a mechanism must be established to notify the next level

cache of the responsibility of bringing the original data to the

requester before the transaction. A direct way to implement it

867

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



in best-effort HTM is to make the bus support a response type

like NACK. As shown in Fig. 3, we take the MESI protocol

as an example for illustration. According to the traditional

protocol, the owner provides dirty data to the requester while

writing it back to the lower-level cache. The requester jumps to

the S state and sends a response of unblock to the lower-level

cache after receiving the data. The directory transitions from

the transient state to the stable state SS only after receiving

the data written back and the unblock message, as shown

in the black arrow in Fig. 3. In order to support HTM, a

response message type of NACK in Fig. 3 is used to tell

the directory that the owner from the upper-level cache has

invalidated itself and that the directory needs to change the

owner of the current cache block to the requester, and at the

same time, send exclusive data to the requester. The requester

is entirely unknown to the whole process and only needs to

turn into a stable state E and send the unblock message to the

directory when the data is received, as shown in the red arrow

in Fig. 3.

Our recovery mechanism is divided into three parts: 1)

support for carrying user-defined data used to resolve conflicts,

2) a mechanism to reject toxic requests selectively and recover

the state, 3) wake up the requests that are rejected ever (it is

not necessary, as we will see later, but we keep the option for

illustration)

Fig. 3. NACK-like message in the best-effort HTM.

User-defined priority of transactions: As mentioned ear-
lier, the requester-win policy is prone to livelocks due to

priority inversion. Suppose there is a global consistent priority

between transactions that ensures that the same transaction

always wins when two transactions request each other’s data.

In that case, livelocks can be avoided, and at least one thread is

guaranteed to move forward even in highly contention scenar-

ios. The priority can be determined before the transaction and

remain unchanged during execution or change dynamically.

If the priority is determined before execution, there is no

problem with priority inversion, but selecting a reasonable

priority is difficult. In this paper, we adopt a dynamic priority

policy based on the number of instructions committed during

a transaction, which broadly weakens the effect of livelocks

caused by friendly-fire because the defeated core re-executes

with the lowest priority and can also help quite a bit to avoid

the unfair situation. In the ACE bus, priority information can

conveniently be encoded in the ARUSER field of the AR

channel [33].

Reject toxic requests and recover the state: The cache
controller can identify toxic requests more quickly and effi-

Fig. 4. The enhanced flow of handling external requests in the

L1 cache controller.

ciently with customized priorities. Fig. 4 illustrates the process

flow when the cache controller receives a request, with the

green part representing the revised additional logic. Trans-

actions receiving external requests initiate parallel tag match

checks and overall priority comparisons (when carrying the

same priority, the processor ID is compared, with smaller

IDs having greater priority). In the absence of conflict, it

adheres to the original process; if a conflict arises and its

priority is higher, the request is denied, and its status remains

unchanged; if its priority is lower, it follows the original

process of aborting the transaction. As with a NACK message,

the reject message is sent as a data-less message that can easily

be encoded on the CRRESP signal of the CR channel of the

ACE bus [33]. Note that the topology of the interconnection

network does not limit this framework, provided the topology

ensures that any two nodes are reachable. Assuming L1 nodes

can communicate directly, the response containing reject in-

formation can be sent directly to the requester. Upon receiving

the response, the requester must record the current state of the

cache block of the responder based on whether it is okay or

rejected. In addition, as shown in Fig. 3, the state information

about the cache block in each L1 cache is piggybacked onto

the unblock message to inform the directory how to update

the state of the cache block and jump to the corresponding

stable state accordingly. In the topology where L1 caches can

only communicate through subordinates, as shown in Fig. 2,

the directory keeps track of the state of the cache block of

the above caches according to the response received in �;
when the last response is received, it updates the sharer list to

L1Cache-2 only, as in �, and � sends a response with reject

information back to the original requester.

Wake up rejected requests: When the requester receives

the response with reject information, the response cannot be

processed according to the original logic. It is necessary to

hold the request in the MSHR, mark it as incomplete, and

restore it to the state before sending the request, as shown

� in Fig. 2. The requester has three options: abort directly,

pause for a fixed period before retrying, or wait for a wake-

up before retrying. The recovery mechanisms do not specify

these options. In the case of waiting for wake-up, the cache

controller must record which cores need to be woken up each

time it rejects a request, as shown in the green shaded table in

Fig. 2, and the table entry is checked at the time of transaction

868

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



abort or commit. If it is not empty, a wake-up message needs

to be sent to the corresponding core, as shown � in Fig. 2.

As with the stash transaction in ACE [33], the core retries the

request after receiving the wake-up message, but it needs to

extend the AWSNOOP signal to identify it.

In summary, the recovery mechanism does not compromise

the SWMR properties of the cache coherency protocol nor

impose significant requirements on the interconnect topology.

It can be implemented by simply extending specific bus signals

to include user-defined data and adding a small amount of

additional parallel logic to the cache controller to handle

harmful requests. When there is no wake-up support, less

hardware overhead is required.

B. HTMLock Mechanism

Every time the fallback lock is acquired, it will cause other

transactions in the process to abort, even if they are not in

conflict with it, which leads to a large amount of wasted

transaction work and, at the same time, consumes an attempt

count, which negatively leads the transaction one step closer

to falling back and executing with a lock. Ultimately, the

system degrades to the point where all the transactions want to

resort to the fallback path, which exhibits poorer performance

than a lock-based scheme. To solve this problem, we propose

the HTMLock mechanism, which does not require locks

and transactions to be executed mutually exclusively, further

improving the system’s potential parallelism and performance

stability. For description purposes, we will refer to transactions

executed with HTM as HTM transactions and transactions

executed with the fallback path as lock transactions. If not

specified, transactions will be assumed to be HTM transactions

by default.

While supporting simultaneous execution of HTM and lock

transactions is not easy, there are two challenges to overcome:

1) lock transactions cannot be rolled back. Hence, the thread

in a lock transaction must be guaranteed to see consistent data

through execution. 2) The semantics of transactions stipulate

that transactions can only read values before the start of other

transactions or values after committing other transactions.

The typical HTM programming interface, utilizing the Intel

RTM instructions, is depicted in Listing 1. Upon execution

of the xbegin instruction, signaling the initiation of a trans-

action, the fallback lock is accessed to include its address in

the transaction read set. In case any subsequent transaction

acquires the fallback lock and reverts to a lock transaction,

all HTM transactions will be aborted. If no thread is currently

involved in a lock transaction, the current thread can proceed

uninterrupted. However, if a thread is engaged in a lock

transaction, the current transaction needs to be aborted, as

indicated in the eighth and ninth lines.

We propose the HTMLock hardware-software co-design

mechanism to address the above two challenges, shown in

Fig. 5. We define an HTMLock mode to mark that the current

lock transaction is running with our HTMLock mechanism,

similar to the fallback path, but without aborting other HTM

transactions in progress.

Fig. 5. The overall architecture of the HTMLock mechanism.

Listing 1 Recommended Software Implementation of Pro-

gramming Interfaces on Best-Effort HTM and Modifications

under HTMLock Mechanism.

1: void lock_acquire_elided(lock_t *lock)
2: {
3: int num_retries = TME_MAX_RETRIES;
4: uint64_t xstatus;
5: do {
6: xstatus = _xbegin();
7: if(xstatus == SUCCESS) {

8: if(!lock_is_free(lock)) {
9: _xabort(TME_LOCK_IS_ACQUIRED);

10: } else {
11: return; // Execute using HTM

12: }
13: }
14: --num_retries;
15: } while (retry_strategy(xstatus,

&num_retries, lock) == 1)
16: lock_acquire(lock);

17: _hlbegin(); // Execute using Lock
18: return;
19: }
20:
21:
22: void lock_release_elided(lock_t* lock)
23: {
24: if (lock_is_free(lock)) {
25: _xend();
26: } else{
27: _hlend();
28: lock_release(lock);
29: }
30: return;
31: }

869

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



Software: The modifications required to support the HTM-
Lock mechanism are highlighted with a grey background

frame, as depicted in Listing 1. Initially, we adapted the

lock acquire elided programming interface of best-effort

HTM by removing the code responsible for adding the address

of the fallback lock to the read set of the transaction. This

modification eliminates the undesirable limitation where a

thread unconditionally terminates all HTM transactions upon

acquiring a lock, even without conflicts. Simultaneously, we

retain the original fallback lock, which ensures that only one

thread can enter HTMLock mode, as it is not feasible for

two threads to access the critical region non-speculatively

simultaneously. Additionally, a line of code, hlbegin, must

be incorporated into the source code at line 17 of the

lock acquire elided programming interface to indicate to the

CPU and memory subsystems that HTMLock mode has been

entered. Furthermore, augmenting the lock release elided pro-

gramming interface is essential by adding an extra line, hlend,

to line 27 of the original source code to facilitate the exit from

HTMLock mode by the CPU and memory subsystems.

Hardware: Two new instructions, hlbegin and hlend, have

been incorporated into the ISA, occupying the same coding

space as the original xbegin and xend instructions. The TL

flag in Fig. 5 indicates that the CPU and memory subsystem

have entered HTMLock mode upon executing hlbegin, a load

instruction. In contrast to xbegin, hlbegin does not require a

return value, since it is guaranteed to succeed. Additionally,

hlend, another load instruction, is used to direct the CPU and

memory subsystem to exit HTMLock mode and clear the read

and write sets.

When the L1 cache controller receives the request from the

hlbegin instruction, it needs to set TL to one to indicate that it

enters HTMLock mode, as shown � in Fig. 5. In this mode, the

lock transaction also needs to record each subsequent memory

access in the read/write set, the same as the transaction in

the best-effort HTM, which ensures that the memory conflict

between the HTM transaction and the lock transaction can be

detected. However, detecting conflicts is not enough; it is also

essential to resolve them correctly. The recovery mechanism

mentioned above can be used to overcome challenge 1. Setting

the priority of the transaction currently in HTMLock mode to

the highest global priority will ensure that any other HTM

transactions will not modify data read by the lock transaction.

Similarly, this method can also overcome challenge 2, killing

two birds with one stone.

However, transactions in HTMLock mode must survive

events such as exceptions and cache overflow to serve as

an irrevocable fallback path. Inspired by LogTM-SE [35],

we place two signatures in LLC to record the read set and

write set overflowed from the L1 cache in HTMLock mode,

as illustrated in Fig. 5. In HTMLock mode, core0 replaces

transaction data on address A in the L1 cache, and as shown in

�, the LLC is notified to add the address to the corresponding

signature. As shown in 	, the HTM transaction in CPU1 wants

to load the data on address A and then sends the request to

the LLC due to cache miss. When receiving external requests,

the LLC needs to check whether the address hits OfWrSig

or OfRdSig while checking the Tag; if the request address

hits OfWrSig, the LLC rejects the current request, and if it

is contained in the OfRdSig and there is no other copy in

the upper level caches the LLC must reject the request as

well. The reason for this is that if there is no other copy, the

requester who receives the exclusive data has the privilege to

store and commit, which could result in subsequent HTMLock

mode transactions loading A with inconsistent data but unable

to rollback, causing the program in the risk of a crash.

C. SwitchingMode Mechanism

To cope with unstable system performance caused by excep-

tions and cache overflow, this paper introduces a mechanism

called switchingMode, which proactively switches from spec-

ulative HTM transaction mode to non-speculative HTMLock

mode. If the attempt to switch the mode fails, the transaction

will be rolled back in the same manner as in the best-effort

HTM; While if it succeeds, the work already performed by

the transaction will not be lost. It should also be noted that

even if the HTM transaction switches to HTMLock mode

successfully, it will not affect other HTM transactions since

we have modified the programming interface to allow both

HTM transactions and lock transactions to run simultaneously

unless there is an actual conflict.

As previously mentioned, the typical entry into HTMLock

mode is indicated by the hlbegin instruction. In order to sup-

port both switching to HTMLock mode proactively and typical

entry into HTMLock mode without adding too much hardware

complexity, we stipulate that: 1) switchingMode mechanism

is only considered when the HTM transaction encounters a

non-conflict induced abort event such as exceptions and cache

overflow. 2) Only one transaction permitted to be in HTMLock

mode at any time.

Firstly, the CPU and cache controllers introduce an extra

one-bit flag called Switched Transactional Lock (STL). This

flag distinguishes between proactively switching to HTMLock

mode and typically entering HTMLock mode, known as

Transactional Lock (TL). Both STL and TL transactions are

lock transactions. In systems that do not support the switching-

mode mechanism, there are no STL transactions, and only TL

transactions go into HTMLock mode, so only one transaction

in TL mode is guaranteed by grabbing the lock indicated

by line 16 in Listing 1. However, under the switchingMode

mechanism, TL transactions must now acquire the LLC’s au-

thorization in addition to obtaining the lock due to contention

with STL transactions. Therefore, the serialization of LLC

ensures the atomic and exclusive switch of STL transactions

into HTMLock mode from HTM transaction mode without

obtaining the lock. Additionally, our approach of LLC’s autho-

rization can seamlessly extends to distributed LLCs by adding

a lightweight centralized arbiter module. Second, the function

of the original instruction ttest is extended. According to ARM

TME Spec [33], the return value of the ttest instruction is

the nesting depth of the transaction. In general, programs are

unlikely to nest many layers of transactions inside a single

870

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



transaction. Therefore, we can agree on two relatively large

numbers. If the CPU is in STL mode, the instruction return

value can be set to 0x0FFFFFFF. While In TL mode, the

return value can be set to 0x1FFFFFFFFF. As a result, the

current transaction state can be determined through the ttest

instruction. With the enhanced ttest instruction, we can rewrite

the lock release elided programming interface, as shown in

Listing 2. Regardless of whether the transaction is in STL or

TL mode, hlend instructions must be executed by the end of

the critical section. As the transaction is in STL mode and

is switched from HTM transaction mode, there is no need to

release the lock, while TL mode requires it.

Listing 2 Enhanced Software Implementation of Programming
Interfaces with HTMLock and SwitchingMode Mechanism.

1: void lock_release_elided(lock_t* lock)
2: {
3: uint64_t tstatus = _ttest();
4: if (tstatus == STL) {
5: _hlend();
6: } else if (tstatus == TL){
7: _hlend();
8: lock_release(lock);
9: } else {
10: _xend();
11: }
12: return;
13: }

The processing flow of proactive switching to HTMLock

mode is shown in Fig. 6. Here is an example scenario illustrat-

ing how a transaction’s read/write set overflowing the L1 cache

can trigger the switchingMode mechanism. If the cache is in

HTM transaction mode and receives a CPU request that needs

to replace the cache block that was accessed by the transaction,

and if the transaction has not attempted to switch to HTMLock

mode before. Then, the request is revoked, the current cache

state is changed to applyingHLA, and all external requests are

blocked. At the same time, the request for applying to enter

the STL mode is initiated to the LLC. Upon receiving the

response from the LLC, set the mode in L1 Cache to STL

and signal the CPU to switch to STL mode if the LLC grants

the request. Regardless of whether the application is approved

or rejected, the applyingHLA state is pulled down, unblocking

requests and, simultaneously, waking up the request that was

previously withdrawn due to cache replacement to enter the

pipeline again. If the application fails, the transaction will

be aborted in the same manner as before. Whether it is an

exception or cache overflow, STL or TL transactions will not

be aborted and then rolled back, as they behave similarly to

the fallback path in the best-effort HTM.
The proactive switching mode should undergo a similar

operation if it is triggered by exceptions, which will not be

discussed in detail here. It should be noted that most of the

exceptions in the transaction are the program’s problems and

can be avoided mostly at the software level [34]. In addition,

supporting switchingMode triggered by exceptions requires

Fig. 6. The processing flow under the switchingMode mecha-

nism.

additional processing logic for the carefully designed and

validated CPU, and context switching during the transaction

may introduce unknown security risks. Therefore, we choose

not to support switchingMode under exceptions now but to

abort the transaction like before.

IV. EXPERIMENTAL RESULTS

This section presents our experimental methodology and the

analysis of the experimental results.

A. evaluation methodology

We use gem5-22 as our experimental platform to validate

and evaluate the performance of the proposed LockillerTM. It

is equipped with best-effort HTM piggybacking on the MESI-

Three-Level-HTM cache coherence protocol implemented by

the ARM team [36]. However, this protocol is only a pre-

liminary implementation, which adds a private intermediate-

level cache to simplify transactional data maintenance in the

L1 cache. It introduces some odd designs, such as invalidating

data from the L1 cache by flushing it to the middle cache even

when the other cores try to load data. Therefore, we modified

the MESI-Three-Level-HTM protocol into a more streamlined,

efficient, and generalized MESI-Two-Level-HTM, assuming

that the next level of cache is shared, as the protocol of our

baseline best-effort HTM.

The parameters of the critical modules of our modeled

system are shown in Table I. We simulate a 32-core tiled

CMP system where the CPU model is an in-order core that

supports ARM TME extensions. The memory subsystem is

configured with a two-level cache hierarchy; the L1 cache is

private, and all cores share the L2 with an inclusive inclusion

policy, although this is not mandatory. Tiles are interconnected

using a 4x8 mesh network with an X-Y routing algorithm.

871

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



To evaluate the performance of our HTM system, we use

the unmodified STAMP benchmarks and the recommended

program inputs as our workloads [37]. Bayes application

is excluded due to its known unpredictable behavior and

highly variable execution time [38], and for both kmeans and

vacation applications, both low-contention and high-contention

configurations were considered.

TABLE I. System Model Parameters

Component Parameter Value
Number of Cores 32
Frequency 2 GHz
Core Detail In-Order, Single-issue, ARM ISA
Cache Line Size 64 bytes
L1 I&D caches Private, 32KB, 4-way, 2-cycle hit latency
L2 cache Shared, unified, 8MB, 16-way, 12-cycle hit latency
Memory 8GB, 100-cycle latency
Coherence protocol MESI, directory-based
Topology and Routing 2-D mesh(4 x 8), X-Y
Flit size/message size 16 bytes / 5 flits (data), 1 flit (control)
Link latency/bandwidth 1 cycle / 1 flit per cycle

To provide a more comprehensive assessment of the stability

of the HTM system, we conducted simulations with thread

counts ranging from 2 to 32 on a 32-core system. Each thread

is bound to a single core and does not involve OS scheduling.

Table II summarizes the HTM systems we will evaluate. In

order to make a fair comparison with coarse-grained locking,

the same source code was used, compiled with the same

compilation options, and run with the same number of threads,

except for the functions of entering and exiting the critical

sections, which are overloaded.

Although there are some simplifications in the currently

modeled system, it is enough to demonstrate the benefits of

LockillerTM using STAMP benchmarks, which are widely

recognized and considered authoritative in the field. We leave

a more comprehensive evaluation of LockillerTM in a more

complex and closer to the actual system, with larger working

sets and different transaction sizes for future work.

TABLE II. Evaluated Systems

CGL Coarse-grained locking with the same granularity of transactions
Baseline Best-Effort HTM with requester-win
LosaTM-SAFU LosaTM without False Sharing and Capacity Overflow OPT
LockillerTM-RAI Baseline + Recovery + SelfAbort + InstsBasedPriority
LockillerTM-RRI Baseline + Recovery + SelfRetryLater + InstsBasedPriority
LockillerTM-RWI Baseline + Recovery + WaitWakeup + InstsBasedPriority
LockillerTM-RWL Baseline + Recovery + WaitWakeup + HTMLock
LockillerTM-RWIL LockillerTM-RWI + HTMLock
LockillerTM LockillerTM-RWI + HTMLock + SwitchingMode

B. performance evaluation

Fig. 7 illustrates the speedup of each application relative

to a coarse-grained locking scheme using the same thread

number on the evaluated systems. The experimental results

demonstrate that LockillerTM outperforms the locking scheme

across all workloads, ranging from a minimum of 2 threads to

a maximum of 32 threads, except for the yada workload due to

many exceptions, which the best-effort HTM and LockillerTM

do not support.

Fig. 7. The speedup of the evaluated systems compared to

coarse-grained locking in the typical cache size under five

different number of threads.

a) Recovery Mechanism and Insts-based Priority: As

can be seen from Fig. 7, after the addition of recovery and

insts-based priority optimization, the performance of the best-

effort HTM has improved substantially. Even in the most

straightforward LockillerTM-RAI configuration, they enable

the HTM to perform better in most workloads. The priority

mechanism ensures that a transaction that restarts execution

after abort will have a lower priority if it conflicts with a trans-

action that previously defeated it. The recovery mechanism is

used in conjunction with the priority mechanism to revoke

requests issued by lower-priority transactions, dramatically

reducing the occurrence of friendly-fire and improving the

commit rate of transactions. As shown in Fig. 8, after the

recovery mechanism and Inst-based priority are applied, the

transaction commit rate is significantly increased by 1.4, 1.69,

and 1.63 times, respectively, compared with base-effort HTM.

b) HTMLock Mechanism: We divide the execution time

into the following six categories: speculative transactions (htm

and aborted), lock transactions (lock), non-transactional and

872

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. The average transaction commit rate of HTM systems

equipped with recovery mechanisms under five different num-

ber of threads.

barrier (non-tran), waiting for the lock (waitlock), and trans-

actional rollback (rollback). In order to demonstrate the advan-

tages of the HTMLock mechanism, we conducted experiments

under 32 threads. The execution time breakdown and transac-

tion commit rate of three HTM systems under each workload

are shown in Fig. 9. We can see that in the LockillerTM-RWIL

system with the HTMLock mechanism, the execution time

under the four workloads of genome, vacation+, vacation, and

intruder is significantly reduced. This is because the HTMLock

mechanism enables lock transactions and HTM transactions

to be executed entirely in parallel, significantly reducing the

time of waiting for locks, as shown in the purple bar in Fig. 9.

In addition, the HTMLock mechanism significantly improves

the commit rate of transactions, as shown in the curve part

of Fig. 9, because some transactions do not conflict with

transactions executed with locks. As shown in Fig. 9, most

transactions in the two applications of labyrinth and yada rely

on a fallback path to execute because transactions often abort

due to cache overflow or exceptions. Despite the significant

improvement in transaction commit rate under labyrinth by

using the HTMLock mechanism, the execution time becomes

longer since labyrinth is a dynamic routing paths workload,

and LockillerTM-RWIL adds more paths, resulting in shorter

average effective calculation times per path.

c) switchingMode Mechanism: In order to highlight the

usefulness of the switchingMode mechanism, we chose to

experiment with two threads since proactive switching mode is

more likely to be successful when the number of threads is low.

We attribute the causes of a transaction abort to the following

six categories, respectively: conflicts with HTM transactions

(mc); conflicts with lock transactions (lock); conflicts with the

fallback path (mutex); NonTransactional conflicts excludes the

lock and mutex (non tran); cache overflow (of); exception

(fault); Two columns are missing in Fig. 10 for kmeans+

due to the fact that kmeans+ has a 100% commit rate under

the HTMLock mechanism. Additionally, From Fig. 10, it can

be seen that the HTMLock mechanism eliminates transaction

Fig. 9. The breakdown of execution time and the transaction

commit rate of the evaluated systems under 32 threads.

aborts due to mutex, while the switchingMode mechanism

significantly reduces aborts due to cache overflow because the

aborts due to cache overflow can be avoided if the switch to

HTMLock Mode is successful.

Fig. 10. Percentage of different reasons for the abort of

transactions on three evaluated systems under 2 threads. From

left to right: Baseline, lockillerTM-RWIL, LockillerTM

Fig. 11 shows the execution time breakdown, with a new

category, switchLock, added to Fig. 9, indicating the execution

time of the entire transaction under a successful switch to

HTMLock mode. As we can see from the graph, especially

for yada, the switchingMode mechanism increases the commit

rate of transactions, greatly reducing the time wasted on

transactions and thus reducing the overall execution time.
d) Performance Comparison with related HTMs:

LosaTM [23] is an excellent recent work on performance

optimization on best-effort HTM. It generalizes and identifies

four specific conflict scenarios, tailors appropriate conflict

solutions to each scenario by recording specific messages,

and incorporates a prioritized conflict solution to cover the

remaining conflict scenarios. In addition, it resolves most

false conflicts through fine-grained cache management. Since

LasaTM ’s solution for false sharing is orthogonal to our

873

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 11. The breakdown of execution time and the transaction

commit rate of the evaluated systems under 2 threads.

scheme, and its optimization scheme for capacity overflow has

a little effect due to the limited usage scenarios described in its

paper, we choose LosaTM-SAFU as a target for comparison.

From Fig. 12, it can be seen that our scheme outperforms

LosaTM-SAFU on average under almost any workload except

labyrinth because the recovery mechanism and insts-based

priority proposed in the paper can cover the friendly-fire sce-

nario and the insts-based priority is more representative than

the progression-based priority used by losaTM. Furthermore,

the HTMLock mechanism is a fully enhanced solution to the

unfair competition scenario mentioned in LosaTM.

Fig. 12. The average speedup of evaluated systems under five

different threads.

e) Sensitivity Analysis for Cache Size: In order to better
characterize that our scheme helps improve the performance

lower bounds of best-effort HTM, we conducted experiments

with a small cache configuration of 8kB L1 cache and 1MB

LLC and a large cache configuration of 128kB L1 cache and

32MB LLC, respectively. The results of the experiments are

shown in Fig. 13. It can be seen that the average speedup of

LockillerTM in both large and small cache configurations is

better than that of coarse-grained locking schemes, as well as

that of requester-win best-effort HTM.

Fig. 13. The average speedup in the large cache configuration

and the small cache configuration respectively under five

different number of threads.

V. CONCLUSIONS

This paper provides a brief overview of previous optimiza-

tion methods for HTM and analyzes the possible factors that

have led vendors to opt for best-effort HTM solutions. In

addition, to improve system performance lower bounds, we

propose three lightweight mechanisms, which are carefully de-

signed and do not require invasive modifications to the system.

Firstly, the recovery mechanism and instruction-based priority

contribute to stabilizing system performance in most scenarios

by mitigating the occurrence of livelocks. For scenarios where

transactions in the system take a fallback path, the HTMLock

mechanism further stabilizes system performance by allowing

lock transactions and HTM transactions to execute simul-

taneously. Lastly, serving as a complement to the previous

two mechanisms in extreme cases, the switchingMode mecha-

nism saves some transactions from unconditional termination

due to cache overflow. Our experiments demonstrate that

LockillerTM outperforms traditional coarse-grained locking

schemes across almost all scenarios. On average, we achieve

speedups of 1.86x and 1.57x compared to best-effort HTM

and state-of-the-art HTM, respectively. In extreme cases, these

speedups reach 7.79x and 6.73x, respectively. In conclusion,

LockillerTM presents a promising solution for overcoming

best-effort HTM limitations, offering improved performance

and adaptability to diverse workloads.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China under Grant 61934002.

REFERENCES

[1] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory: Architectural
Support For Lock-free Data Structures,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, May 1993,
pp. 289–300.

874

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 



[2] C. Cascaval et al., “Software Transactional Memory: Why Is It Only
a Research Toy? The promise of STM may likely be undermined by
its overheads and workload applicabilities.,” Queue, vol. 6, no. 5, pp.
46–58, Sep. 2008.

[3] D. Makreshanski, J. Levandoski, and R. Stutsman, “To lock, swap, or
elide: on the interplay of hardware transactional memory and lock-free
indexing,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1298–1309, Jul.
2015.

[4] J. Bobba et al., “Performance Pathologies in Hardware Transactional
Memory,” IEEE Micro, vol. 28, no. 1, pp. 32–41, Jan. 2008.

[5] Rajwar, Ravi, and Martin Dixon. ”Intel transactional synchronization
extensions.” In Intel Developer Forum San Francisco, vol. 2012.

[6] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in the
power architecture,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, in ISCA ’13. New York, NY,
USA: Association for Computing Machinery, Jun. 2013, pp. 225–236.

[7] Overview of Arm Transactional Memory Extension. (2022, May 17).
https://developer.arm.com/documentation/102873/0100/Overview

[8] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,
“Unbounded transactional memory,” in 11th International Symposium on
High-Performance Computer Architecture, Feb. 2005, pp. 316–327.

[9] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional memory,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
Jun. 2005, pp. 494–505.

[10] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: log-based transactional memory,” in The Twelfth International
Symposium on High-Performance Computer Architecture, 2006., Feb.
2006, pp. 254–265.

[11] L. Hammond et al., “Transactional Memory Coherence and Consis-
tency,” SIGARCH Comput. Archit. News, vol. 32, no. 2, p. 102, 2004,

[12] S. Tomić et al., “EazyHTM: eager-lazy hardware transactional memory,”
in Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, New York New York: ACM, Dec. 2009, pp.
145–155.

[13] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible Decoupled
Transactional Memory Support,” in 2008 International Symposium on
Computer Architecture, Jun. 2008, pp. 139–150.

[14] M. Lupon, G. Magklis, and A. González, “A Dynamically Adaptable
Hardware Transactional Memory,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2010, pp. 27–38.

[15] S. Park, C. J. Hughes, and M. Prvulovic, “Forgive-TM: Supporting Lazy
Conflict Detection In Eager Hardware Transactional Memory,” in 2019
28th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2019, pp. 192–204.

[16] R. Titos-Gil, R. Fernández-Pascual, A. Ros, and M. E. Acacio, “DeTraS:
Delaying Stores for Friendly-Fire Mitigation in Hardware Transactional
Memory,” IEEE Transactions on Parallel and Distributed Systems, vol.
33, no. 1, pp. 1–13

[17] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pp. 246–257, Nov. 2008,

[18] U. Aydonat and T. S. Abdelrahman, “Hardware Support for Relaxed
Concurrency Control in Transactional Memory,” Micro, pp. 15–26, Dec.
2010,

[19] [1] S. A. R. Jafri, G. Voskuilen, and T. N. Vijaykumar, “Wait-n-GoTM:
improving HTM performance by serializing cyclic dependencies,” In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, vol. 41, no. 1, pp. 521–534, Mar. 2013,

[20] H. Litz, D. R. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson,
“SI-TM: reducing transactional memory abort rates through snapshot
isolation,” vol. 42, no. 1, pp. 383–398, Feb. 2014,

[21] Ziqi Wang, Z. Wang, Ziqi Wang, M. Kozuch, T. C. Mowry, and V.
Seshadri, “Multiversioned Page Overlays: Enabling Faster Serializable
Hardware Transactional Memory,” pp. 395–408, Sep. 2019,

[22] S. Park, M. Prvulovic, and C. J. Hughes, “PleaseTM: Enabling trans-
action conflict management in requester-wins hardware transactional
memory,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Mar. 2016, pp. 285–296.

[23] C. Fu, L. Wan, and J. Han, “LosaTM: A Hardware Transactional
Memory Integrated With a Low-Overhead Scenario-Awareness Conflict
Manager,” IEEE Transactions on Parallel and Distributed Systems, vol.
33, no. 12, pp. 4849–4862, Dec. 2022,

[24] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for
transactional memory systems,” in Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, in SPAA ’08.
New York, NY, USA: Association for Computing Machinery, 2008, pp.
169–178.

[25] G. Blake, R. G. Dreslinski, and T. Mudge, “Proactive transaction
scheduling for contention management,” MICRO, 2009.

[26] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” HPCA, 2011.

[27] N. Diegues, P. Romano, and S. Garbatov, “Seer: Probabilistic Scheduling
for Hardware Transactional Memory,” in Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and Architectures, Portland
Oregon USA: ACM, Jun. 2015, pp. 224–233.

[28] M. M. Waliullah and P. Stenström, “Intermediate checkpointing with
conflicting access prediction in transactional memory systems,” 2008
IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–11, Apr. 2008,

[29] C. Blundell, A. Raghavan, and M. M. K. Martin, “RETCON: transac-
tional repair without replay,” SIGARCH Comput. Archit. News, vol. 38,
no. 3, pp. 258–269, 2010,

[30] A. Negi, A. Armejach, A. Cristal, O. S. Unsal and P. Stenstrom, ”Trans-
actional prefetching: Narrowing the window of contention in Hardware
Transactional Memory,” 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
USA, 2012, pp. 181-190.

[31] R. Titos-Gil, R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Con-
current Irrevocability in Best-Effort Hardware Transactional Memory,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 6,
pp. 1301–1315.

[32] A. Armejach, R. Titos-Gil, A. Negi, O. S. Unsal, and A. Cristal, “Tech-
niques to improve performance in requester-wins hardware transactional
memory,” ACM Trans. Archit. Code Optim., vol. 10, no. 4, p. 42:1-42:25

[33] ARM. AMBA AXI and ACE Protocol Specification, March. 2020.
version ARM IHI0022H.

[34] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom, “Per-
formance and Energy Analysis of the Restricted Transactional Memory
Implementation on Haswell,” in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, May 2014, pp. 615–624.

[35] Yen, Luke, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris
Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. “LogTM-
SE: Decoupling Hardware Transactional Memory from Caches.” In 2007
IEEE 13th International Symposium on High Performance Computer
Architecture, 261–72, 2007.

[36] Lowe-Power, Jason, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, et al. “The
Gem5 Simulator: Version 20.0+.” arXiv, September 29, 2020.

[37] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. “STAMP: Stanford Transactional Applications for Multi-
Processing.” In 2008 IEEE International Symposium on Workload
Characterization, 35–46. Seattle, WA, USA: IEEE, 2008.

[38] Negi, Anurag, Rubén Titos-Gil, Manuel E. Acacio, José M. Garcia,
and Per Stenstrom. “π-TM: Pessimistic Invalidation for Scalable Lazy
Hardware Transactional Memory.” In IEEE International Symposium on
High-Performance Comp Architecture, 1–12, 2012.

875

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 15,2024 at 02:53:44 UTC from IEEE Xplore.  Restrictions apply. 


