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A B S T R A C T

This paper presents a low-power programmable dynamic gesture recognition chip based on a RISC-V processor
using RGB images. The chip uses two gesture recognition algorithms to recognize the most commonly used
dynamic gestures (up, down, left, and right) with any shape of a hand at the distance of 10 cm ∼ 90 cm and
speed of 10 cm/s ∼ 150 cm/s. The chip is fabricated in a 28 nm process and occupies an area of 640 μm
x 640 μm. The accuracy reaches 93% ∼ 99% at complex backgrounds with 320x240 RGB image. It operates
either in the recognition mode or in the standby mode that can be automatically switched to the other. The
power consumption of the recognition mode is 397 𝜇W at 0.584 V supply voltage, 25 MHz clock, and 30 FPS.
And the power consumption of the standby mode at room temperature is 78.3 𝜇W.
1. Introduction

With the rapid development of intelligent devices, IoT, AR/VR, and
more, the new intelligent human–computer interaction (HCI) with char-
acters of natural, barrage-free, contactless, fast, and convenient, has
become the inevitable trend to replace the traditional non-intelligent
HCI methods such as the usual mouse, keyboard, touch screen [1,2].
Gesture recognition (GR) as an import HCI has been gradually used by
smartphones, IoT, wearable devices, intelligent homes, and more for its
most natural, noiseless features. However, these fields have extremely
strict requirements for power consumption, GR chips need to have low
power consumption, high precision, low complexity characteristics [3,
4]. GR is largely dependent on the acquisition equipment and is realized
by different acquisition devices and algorithms. Lamberti [5] extracts
the features of color gloves for real-time GR, and the recognition ac-
curacy reaches 97%. However, gloves are uncomfortable for wearable,
and in many cases, they are not suitable to wear. With the appearance
of the bracelet, GR through muscle electrical signals has become one of
the trends. Ulysse [6] uses transfer learning to recognize electromyo-
graphic (EMG) for GR and achieves high recognition accuracy. At the
same time, millimeter-wave radar has also become a good acquisition
device for GR and is widely used in a variety of intelligent devices [7].

Another GR technology applies images as inputs. Lu [3] applies the
most widely used ordinary camera to gain gesture with RGB image and
realizes the dynamic and static GR chip with high energy efficiency
ratio. Ba [8] realizes wake-up and dynamic gesture recognition (DGR)
chip with an infrared sensor. The TOF (Time of flight) camera captures
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images with 3D depth for recognizing gestures in real-time [9]. The
device Kinect [10], which is composed of many kinds of acquisition
devices, has been widely used in GR. The Kinect provides color images,
depth images, and skeleton data with rich information, which is con-
ducive to the needs of GR [11]. Also, the skeleton data generated by
Kinect plays a role in GR. Liu [12] decouples the gesture into hand
posture variations and hand movements using 3DCNN and 2DCNN
based on gesture skeleton. To further reduce the power consumption,
the image sensor [13,14] is used for image acquisition in GR.

RISC-V [15,16] is an open-source hardware instruction set archi-
tecture (ISA) based on the established RISC principles, which has the
compelling advantages of simplicity, extendibility, flexibility, customiz-
ability, high energy efficiency and free. More and more companies and
universities have joined the RISC-V Foundation, and RISC-V has been
used in IoT, machine learning, wearable devices, and more. In this
work, an open-source RISC-V core rocket-chip [17] is used to configure
and control our chip for two DGR algorithms, which can significantly
improve the flexibility and programmability of our chip, accelerate the
design and reduce the design cost.

In this paper, we propose a low-power high-precision programmable
DGR chip based on 320 × 240 RGB image, which is integrated, con-
figured, and controlled by RISC-V processor [18]. Our chip operates
in the complex backgrounds at the distance of 10 cm∼90 cm, at the
speed of 10 cm/s∼150 cm/s, and gets accuracy of 93%∼99%. Our chip
identifies the most commonly used dynamic gestures (up, down, left,
and right) with characteristics of programmable, easy to transplant,
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Fig. 1. The proposed DGR algorithm.
low power consumption, high precision. Besides, we use a simple way
to make the chip enter the standby mode, which greatly reduces the
power consumption of the chip.

2. The proposed DGR algorithms

2.1. The influencing factors of DGR

In addition to the influence of sampling equipment, the recog-
nition effect of DGR is directly related to several factors including
distance, speed, illumination, environment. However, there is no per-
fect algorithm and hardware for DGR in various complex backgrounds.
Therefore, it is an urgent need to further improve the recognition abil-
ity, flexibility, and applicability of DGR for the environment through
the algorithm and hardware.

2.2. The detecting algorithm

To meet the practical needs as much as possible, we use the ordinary
RGB camera as our image acquisition equipment. The input image size
is 320 × 240, and the frame frequency is 30 frames per second (FPS).
Fig. 1 shows our proposed DGR algorithm with low algorithm complex-
ity, which consists of two GR methods named inter-frame difference
for gesture tracking and recognition (FDTR) and finding contours for
gesture tracking and recognition (FCTR).

𝑆𝑘𝑖𝑛 =
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⎨
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𝐶𝑏 = (−43𝑅 − 85𝐺 + 128𝐵)∕256 + 128
𝐶𝑟 = (128𝑅 − 107𝐺 − 21𝐵)∕256 + 128
𝐶𝑟 ∈ [133, 173]
𝐶𝑏 ∈ [77, 127]

(1)

When the IDLE module receives the image, the preprocessing unit
(PREU) uses Eq. (1) to preprocess each pixel which separates the
skin color region from the non-skin color region. The PREU includes
the YCrCb conversion operation and the binarization operation. After
PREU, the total amount of skins in the image is compared with the
preset threshold value to determine whether there is a hand in the
camera field. Also, the result of the comparison decides whether the
GR algorithm enables subsequent processes, as shown in Fig. 1(a).

2.3. The FDTR/FCTR method

We design two DGR methods under the condition of reuse resources
as much as possible to be suitable for DGR in two different application
scenarios, as shown in Fig. 1(b). FDTR is suitable for gesture movement
2

with no other skin-like area’s movement at complex backgrounds when
FCTR is suitable for one-handed movement with no or similar skin color
in the background. The switch between the two algorithms is operated
by software.

Firstly, FDTR carries out an inter-frame difference (IFD) operation
on the binary image to get the difference image containing the moving
area of the hand. Secondly, FDTR carries out the median blur (MBLUR)
operation on the difference image to filter the salt and pepper noise
caused by uneven illumination. Finally, since the difference image only
contains the moving area of the hand, the centroid (CTD) operation
directly calculates the centroid of the moving area for the subsequent
tracking and recognition process (TAR).

Similarly, FCTR firstly carries out the CLOSE operation, which
includes dilation and erosion operations, on the binarization image to
gain a complete hand contour. Secondly, the MBLUR is applied, which
is the same as the MBLUR in FDTR. Thirdly, the find contour operation
(FINDC), which is the same as OpenCV’s FindContours function, finds
the hand’s contour and gets the edge of the hand. CTD calculates the
centroid of the gesture by the edge. FCTR operation is suitable for only
one hand or hand with the user’s face. For background with multiple
skin or skin-like tones, the number of contours exceeds 2, FCTR gives
some feedback to adjust the backdrop.

2.4. TAR

After FDTR or FCTR operation, the centroid is sent to the TAR
operation to obtain the direction of the dynamic gesture, as shown in
Fig. 1(c). TAR tracks the centroid, calculates the accumulated historical
displacement (AHD), compares AHD with the current displacement
(CRD) generated by the current centroid (CURC) and the last centroid
(LAC), and recognizes the direction according to the classifier of GR.
TAR gives feedback based on the number of centroid in the FCTR. After
sending feedback and recognition, TAR clears the AHD.

3. The processor block diagram

3.1. Overall architecture

The proposed programmable DGR chip is composed of peripherals,
OV5640 Config unit (OVCU), UART, QSPI, PREU, and DGR system, as
shown in Fig. 2. The peripheral devices include the OV5640 camera
that collects RGB images, a PC that interacts with the DGR chip by
UART, and an external flash that saves the running program. The
camera needs to be initialized by OVCU through software or hardware
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Fig. 2. The proposed low-power high-precision DGR chip.
Fig. 3. The wake-up unit.

Fig. 4. The RISC-V processor.

configuration. The DGR system is developed based on RISC-V instruc-
tion set. It has the capability of simplicity, low power consumption,
modularization, and extensibility. And it enhances the application of
GR in embedded, IoT, intelligent devices, and more.

3.2. PREU and wake-up unit

After initializing the camera, the DGR chip gets a 320 × 240 RGB
image stream from the camera. When PREU receives the image from
the camera, it binarizes the image as proposed before and sends it to
the wake-up unit. In PREU, the image is decomposed into the skin
color/non-skin color. And the image size is compressed by 16 times,
which reduces the power of subsequent transmission and processing.

The wake-up unit, on the one hand, uses 16-bit JREG to concatenate
the pixels, on the other hand, adds up the binary image and saves the
sum in 17-bit CNT register, as shown in Fig. 3. When a complete image
enters the chip, the CNT value is compared with the 17-bit threshold
value TREG which is configured by the RISC-V processor. The result
3

of the comparison determines whether the next frame is written into
2 kB asynchronous FIFO and whether the chip wakes up the subsequent
recognition process. The clock of all operations before writing FIFO is
75 MHz provided by OV5640, and all subsequent operations use the
given main clock of 25 MHz. According to the comparison, the standby
function is realized in a simple way with lower cost and lower standby
power consumption.

3.3. The RISC-V processor

We use a RISC-V processor, named rocket-chip, for configuration,
data handling, control, output, etc. In contrast to most instruction sets,
the RISC-V instruction set is freely used for any purpose, allowing
anyone to design, manufacture, and sell RISC-V chips and software.
While this is not the first open-source instruction set, it is significant.
Because it is designed to work with modern computing devices, such
as warehouse-scale cloud computers, high-end mobile phones, and tiny
embedded systems.

In this paper, the RISC-V processor contains 4 kB L1I$ and 24 kB
L1D$, as shown in Fig. 4. L1I$ gets the instructions from the external
flash through QSPI and the bus. L1D$ can be directly accessed by the
core and coprocessor and the 16-bit data from the FIFO is stored in the
corresponding location of L1D$. The core controls the operation of the
coprocessor through the rocket custom coprocessor (RoCC) interface.
The RISC-V processor effectively improves the hardware development
cycle, reduces the control of hardware resources, and makes our chip
has the programmable, extensible ability.

3.4. The DGR coprocessor

As shown in Fig. 5, the DGR coprocessor includes the RoCC in-
terface that interacts with the RISC-V processor, the arbiter module
that determines the priority of reading and writing L1D$, the FF and
TAR module. The coprocessor performs operations under the control
of the RISC-V processor through the RoCC interface. DGR coprocessor
implements the aforementioned FDTR/FCTR through the program.

The RoCC interface module contains the register bank that can be
written and read by the RISC-V processor. CREG configured by the
processor for improving DGR precision at different scenarios stores
parameters. Changing parameters can achieve the optimal recogni-
tion effect at different distances, different moving speeds. IREG is the
extension instructions from the processor to control the processes of
the coprocessor. As shown in Table 1, the extended instructions are
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Fig. 5. The DGR coprocessor.
Table 1
The extension instruction.

Extension Ins. Function

RoCC_CONFIG Config CREG
RoCC_INITIAL Initial coprocessor and clear AHD
RoCC_MBLUR MBLUR
RoCC_CLOSE CLOSE
RoCC_FINDC FINDC
RoCC_CTD CTD
RoCC_TAR TAR
RoCC_PRINT Print FREG and DREG

combined for our two DGR algorithms. DREG and FREG store the
output direction and feedback from TAR for print.

The FF and TAR modules are the DGR calculation modules, includ-
ing MBLUR, CLOSE, FINDC, CTD, and TAR, which are controlled by
instructions in IREG. Each module is independent of the other, and the
computation cannot be executed in parallel, controlled by instructions.
Since MBLUR, CLOSE, FINDC, and CTD all need to read and write L1D$,
the arbiter module is required to control the reading and writing of
L1D$.

The MBLUR module uses a 5 × 5 kernel to slide on the image to gain
the sum. If the sum beyond the median value, the center of the 5 × 5
area is 1, otherwise 0. Similarly, the CLOSE module uses ‘‘&’’ and ‘‘∥’’
instead of ‘‘+’’ in MBLUR. Each instruction of MBLUR and CLOSE takes
effect on only one row of data, which hides calculation time in image
transfer. As mentioned earlier, MBLUR eliminates the noise of salt and
pepper, and CLOSE gets a better-closed hand contour.

For FINDC, firstly, it traversals the image until detecting skin pixel,
and sets this coordinate as a breakpoint. Then FINDC performs the
eight-neighborhood search to find the hand peripheral contour and
calculates the area. Thirdly FINDC performs CTD and fills the current
area with zeros. Finally, FINDC returns to the first step and continues
traversing the image from the breakpoint until traversing the whole
image.

For FCTR, CTD reads out all the skin pixels according to the coordi-
nates of the peripheral contour and calculates the value of the centroid.
And CTD is executed in the course of a FINDC loop. For the FDTR
4

Table 2
Feedback situation.

Situation Feedback

Tip1: CTD_Count > 2 Please make sure there are no skin-like areas in
background!

Tip2: CTD_Count = 2 && Face
at right

Please move your face left or tips1!

Tip3: CTD_Count = 2 && Face
at left

Please move your face right or tips1!

Tip4: CTD_Count = 2 && Face
at bottom

Please move your face up or tips1!

Tip5: CTD_Count = 2 && Face
at top

Please move your face down or tips1!

module, CTD reads out the whole image and calculates the centroid
of the image.

The TAR module draws the movement trajectory of the hand ac-
cording to the centroid and takes the AHD and CRD as the direction
judgment standard. The tracing bases on continuous growth in one
direction of X/Y. When the CRD is opposite to the growth direction
or the large abrupt displacement is appearing, the direction of DGR is
recognized and written into DREG.

3.5. Program and feedback

The chip is controlled by the C program, which includes the camera
configuration, the TREG/CREG configuration, the image transfer, and
performing operations. For FDTR, the IFD process is done during the
image transfer, as shown in Fig. 6.

For feedback, the core receives data from FREG and outputs the
corresponding tips, instructing the user to change their background and
location, as shown in Table 2.

4. Experimental results

4.1. Wake-up and recognition processing latency

As shown at the top of Fig. 7, the transmission process of the image
is represented by vertical synchronization (VSYNC) and horizontal syn-
chronization (HSYNC). And the wake-up unit judges the binary image
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Fig. 6. The DGR program.

from the PREU module whether to perform wake-up or sleep operation
in the next frame. If the wake-up operation is executed, which means
the chip enters the recognition mode. The wake-up unit pulls up the
valid signal and the chip is in recognition mode. Instead, when the
recognition process ends, the valid signal is set to 0, and the chip is
in standby mode. The image input time is 33 ms, and the latency of
the wake-up/sleep processes is three cycles after the input process.

For FDTR and FCTR, their recognition process is programmatically
controlled, as shown in Figs. 6 and 7. For FDTR, FD and MBLUR run
at the HSYNC transfer time and the time between HSYNC and HSYNC,
as shown at the middle of Fig. 7. After the transmission of a frame,
CTD and TAR process are calculated. TAR outputs a recognition result
in each frame, and the output direction is valid if DREG is not 0. The
latency of recognition is just three cycles after CTD.

For FCTR, MBLUR and CLOSE also run at the HSYNC transfer time
and the time between HSYNC and HSYNC, as shown at the bottom
of Fig. 7. When the L1D$ stores the frame, FINDC is starting to find
the contours and the CTD calculates the centroid by the coordinates
from FINDC. Due to the particularity of FINDC, there is multiple cyclic
switching between FINDC and CTD. The subsequent TAR process is the
5

same as the FDTR’s TAR. It is important to note that FINDC detects
multiple profiles and uses this to feedback to the tester’s environment.

4.2. DGR accuracy

To test the accuracy of our chip at different speeds and different
distances, we used a hand mold and a sliding rail that can control
the speed to conduct experiments, because the speed and motion
process of the hand are difficult to control. The distance we tested is
10 cm∼90 cm, and the speed we tested is 10 cm/s∼150 cm/s at normal
light, as shown in Fig. 8.

As shown in Fig. 8(a), for FDTR, in the distance of 10 cm∼40 cm, the
accuracy under 20 cm/s∼30 cm/s or 100 cm/s∼150 cm/s is lower than
the 30 cm/s∼100 cm/s. When the distance exceeds 50 cm and speed is
10 cm/s, the chip ignores the movement with small CRD which means
the movement is evaluated as small jitter. When the speed exceeds
10 cm/s, the recognition accuracy is 95%∼99%.

As shown in Fig. 8(b), for FCTR, in the distance of 10 cm∼20 cm,
the recognition accuracy is zero, because the centroid does not change
when the image is filled by the hand. As the distance increases, the
chip can recognize the dynamic gesture. And the recognition accuracy
is 93%∼99% for the FCTR algorithm.

The two algorithms in the chip achieve accuracy of 93%∼99% under
complex background, and the accuracy can be optimized by adjusting
the configuration parameters according to the actual needs. For FDTR,
the testing distance of our chip can exceed 90 cm, but FCTR needs to
ensure that the face is located in the center of the image in a longer
distance, otherwise, feedback will appear for adjustment. In the longer
distance, the parameter of TREG needs to be adjusted to avoid the chip
being stuck in standby mode.

4.3. The measured power consumption

As shown in Fig. 9(a), the DGR system consumes 397 μW at 0.584 V
supply voltage, 25 MHz clock frequency for FDTR, without compromis-
ing functionality. While for FCTR, the DGR system consumes 483 μW at
0.580 V supply voltage, 35 MHz clock frequency. Due to the influence
of the FIFO depth in the wake-up unit and the high time of FINDC, the
minimum clock frequency of FDTR is 35 MHz. For the standby mode,
Fig. 7. The latency of wake-up and recognition.
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Fig. 8. Measured accuracy of DGR chip.
Fig. 9. Measured power distribution of our DGR chip.
the DGR system does not work, that is, the static power consumption
is the standby power consumption when the master clock is turned off.
The standby mode consumes 78.3 μW for FDTR and consumes 82.5 μW
for FCTR at the minimum voltage and minimum clock.

As shown in Fig. 9(b), the power consumption ratio of CAMC,
PREU and WAK-UP is 0.5%, 1.0% and 1.1%, respectively. The RISC-V
processor’s power consumption ratio is 64.3%, including 7.8% for the
L1D$, 18.7% for the L1I$, and 37.8% for the others (except storage),
since RISC-V core controls all processes. DGRC power consumption
accounted for 33.1%.

4.4. Chip summary and test demo

The test chip was fabricated in 28 nm CMOS process and occupies
an area of 640 μm × 640 μm, as shown in Fig. 10(a). The entire chip
contains 36 I/O ports and 26 kB memory. With 30 frames of 320 × 240
RGB images as input, the DGR chip consumes 397 μW and 78.3 μW in
the recognition and standby mode at 0.584 V.

In comparison with previous state-of-the-art gesture detections as
shown in Table 3, our chip achieves 93%∼ 99% recognition at distances
of 10–90 cm and speeds of 10–150 cm/s under complex backgrounds.
With a view to fair comparison, we normalize the energies at different
technology nodes with respect to 28 nm using an energy normalization
6

factor. Large image inputs inevitably bring higher energy consumption.
To evaluate the performance of our chip, we calculate the energy
of each pixel (EOEP) to remove the impact of the input image size
inconsistency. The calculation results show that our chip has the lowest
EOEP of 0.1723 nJ/pixel. Our chip has higher accuracy, suitable for
longer distances and complex backgrounds with the lowest EOEP.

The demo system consists of three parts, which are the DGR chip test
board, the PC receiving and sending the direction, and the FPGA board
for ‘‘Snake’’ and ‘‘Tetris’’ games, as shown in Fig. 10(b). The PC receives
the direction of the gesture in real-time and then sends the direction to
control the games. We move the hand up, down, left, and right in front
of the camera. And the test board recognizes the direction and sends it
to the PC. The PC sends the control instructions to the FPGA board for
game control.

5. Conclusions

A low-power high-precision DGR chip is proposed for smartphones,
IoT, wearable devices, and etc. The chip integrates a small RISC-V
processor as the controller, which has the ability of programmable and
portable. With RGB images as inputs, the chip performs real-time calcu-
lations and identifies the most commonly used up, down, left, and right
dynamic gestures with an accuracy of 93%∼99%. Besides, the chip runs
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Table 3
Comparison with other state-of-the-art gesture recognition works.

Specifications This work [19] VLSI2020 [4] SSCL2019 [14] ISSCC2018 [20] ISSCC2016

Process 28 nm 65 nm 65 nm 65 nm 65 nm
Sensor type Camera Image sensor Image sensor 3D Camera Camera
Resolution 320 × 240 Image 32 × 32 Image 32 × 32 Image 3D Image 2 × 320 × 240

Image
Area 640 μm × 640 μm 1.78 mm2 680 μm × 590 μm 4 mm × 4 mm 4 mm × 4 mm
Frame rate (FPS) 30 30 30 33.3 30
Voltage supply 0.580 V–1.100 V 0.8 V 0.46 V 0.85 V 1.2 V
Power 397 μW 137 μW 213.7 μW 9.02 mW 126.1 mW
Energy 397 μJ 137 μJ

18.35 μJa
213.7 μJ
63.0426 μJa

9.02 mJ
778.426 μJa

126.1 mJ
5.460 mJa

EOEP 0.1723 nJ/pixel 0.597 nJ/pixela 2.052 nJ/pixela NAa 1.184 nJ/pixela
Target distance 10–90 cm ≤60 cm 10–40 cm 20–40 cm 20–30 cm
Accuracy 93%∼99% 90.6% 85% 4.3 mm 95%∼99%
Algorithm FDTR or FCTR Features extraction Convolution based Convolutional

neural network
Deep learning

Background Complex Simple Simple Simple Simple
Programmable Yes No No No No

aEnergy normalization factor is 𝐹𝑎𝑐𝑡𝑜𝑟𝐸𝑛𝑒𝑟𝑔𝑦 = (28𝑛𝑚∕65𝑛𝑚)2 × (𝑉28∕𝑉65)2.
Fig. 10. Micrograph of DGR chip and test demo.
in both recognition and standby mode. In standby mode, the chip can
further reduce power consumption and adopt a simple method to wake
up to recognition mode. The chip realizes FDTR and FCTR algorithms
which be applied to DGR under a variety of complex scenarios. The
chip is fabricated in 28 nm CMOS process and demonstrates successful
operations with real-time input from the OV5640 camera for a game
controller. The power consumption of the chip in the recognition state
is 397 μW and the power consumption of the chip in the standby state
is 78.3 μW for 320 × 240 image at 0.584 V, the main clock frequency
of 25 MHz and a frame rate of 30 FPS. The chip can be used in
smartphones, IoT, wearable devices, game controllers with the features
of high accuracy, low power, programmable, and portable.
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